
Documentation
Release 0.4

Johannes Baiter

October 13, 2014

Contents

1 Command-Line Tutorial 2
1.1 Installation . 2
1.2 Configuration . 2
1.3 Workflow . 3

2 GUI Wizard 5
2.1 Enabling the GUI . 5
2.2 Usage . 5

3 Installation 9
3.1 Prerequisites . 9
3.2 Optional requirements . 9
3.3 Installing from PyPi . 9
3.4 Installing from GitHub . 9

4 Configuration 10

5 Command-Line Interface 12
5.1 wizard . 12
5.2 configure . 12
5.3 capture . 12
5.4 postprocess . 13
5.5 output . 13

6 Plugins 14
6.1 subcommand plugins . 14
6.2 postprocess plugins . 14
6.3 output plugins . 15

7 Extending spreads 17
7.1 Adding support for new devices . 17
7.2 Extending spreads built-in commands . 17
7.3 Adding new commands . 17

8 Frequently Asked Questions 18
8.1 CHDK Cameras . 18

9 API Reference 19

ii

9.1 spreads.plugin . 19
9.2 spreads.util . 22

10 Changelog 23
10.1 0.4.2 (2014/01/05) . 23
10.2 0.4.1 (2013/12/25) . 23
10.3 0.4 (2013/12/25) . 23
10.4 0.3.3 (2013/08/28) . 23
10.5 0.3.2 (2013/08/24) . 23
10.6 0.3.1 (2013/08/23) . 24
10.7 0.3 (2013/08/23) . 24
10.8 0.2 (2013/06/30) . 24
10.9 0.1 (2013/06/23) . 24

Python Module Index 25

iii

iv

CHAPTER 1

Command-Line Tutorial

This tutorial assumes that you are using a setup with two Canon A2200 cameras that
have the latest version of CHDK installed. The rest of the setup is up to you,
though development and testing has been performed with a build of the DIYBookScanner
(http://diybookscanner.org/forum/viewtopic.php?f=1&t=1192). Furthermore, the following instructions
are tailored to an up-to-date installation of a Debian GNU/Linux installation or one of its derivatives
(*buntu, Linux Mint, etc.). You might have to adjust the commands for other distributions. This tutorial
will also use most of the included plugins, so the dependencies are rather numerous, though you can
adapt that, if you want.

The described (and recommended) way to install spreads is inside of a virtualenv (http://docs.python-
guide.org/en/latest/dev/virtualenvs/), not system-wide, though you can do so as well, if you like.

1.1 Installation

First, ensure that you have all the dependencies installed:

$ sudo apt-get install python2.7 python2.7-dev python-virtualenv libusb-dev\
libjpeg-dev libtiff-dev libqt4-core rubygems ruby-rmagick libmagickwand-dev\
libhpricot-ruby scantailor

$ sudo gem install pdfbeads
$ wget http://djvubind.googlecode.com/files/djvubind_1.2.1.deb
$ sudo dpkg -i djvubind_1.2.1.deb
Download the latest ’chdkptp’ release from the website:
https://www.assembla.com/spaces/chdkptp/documents
$ sudo unzip chdkptp-<version>-<platform>.zip -d /usr/local/lib/chdkptp
$ virtualenv ~/.spreads
$ source ~/.spreads/bin/activate
$ pip install spreads

1.2 Configuration

To perform the initial configuration, launch the configure subcommand:

$ spread configure

You will be asked to select a device driver (choose a2200) and some plugins (choose all except gui and
colorcorrect). Next, configure the order in which your postprocessing plugins should be invoked. I
recommend you set this to the following value:

2

http://diybookscanner.org/forum/viewtopic.php?f=1&t=1192
http://docs.python-guide.org/en/latest/dev/virtualenvs/

Documentation, Release 0.4

autorotate,scantailor,tesseract

Next, you can set the target pages for each of your cameras. This is necessary, as the application has to:

• combine the images from both cameras to a single directory in the right order

• set the correct rotation for the captured images

To do both of these things automatically, the application needs to know if the image is showing an odd
or even page. Don’t worry, you only have to perform this step once, the orientation is stored on the
camera’s memory card (under A/OWN.TXT). Should you later wish to briefly flip the target pages, you
can do so via a command-line flag.

Note: If you are using a DIYBookScanner, the device for odd pages is the camera on the left, the one
for even pages on the right.

After that, you can choose to setup the focus for your devices. By default, the focus will be automatically
detected on each shot. But this can lead to problems: Since the camera uses the center of the frame to
obtain its focus, your images will be out of focus in cases where the center of the page does not have
any text on it, e.g. in chapter endings. This step is therefore recommended for most users. Before you
continue, make sure that you have loaded a book into the scanner, and that the pages facing the camera
are evenly filled with text or illustrations.

Once you’re done, you can find the configuration file in the .config/spreads folder in your home directory.

See also:

Configuring

1.3 Workflow

To begin, we run spreads in the wizard mode, which will guide us through the whole workflow:

$ spread wizard ~/my_book

On startup, your cameras will simultaneously adjust their zoom levels and set their focus. Once this is
done, the application will ask you to press one of your configured shooting keys (default: b or space).
If you do so, both cameras will take a picture simultaneously, which is then transferred to our computer
and stored under the correct filename in the raw subdirectory of our project directory. Should you notice
that you made a mistake during the last capture, you can press r do discard the last capture and retake
it. Now scan as many pages as you need, when you’re done, press f to quit the capturing process and
continue to the next step.

Now spreads will begin with the postprocessing of the captured images. If you followed the instructions
so far, it will first rotate the images, which, depending on your CPU and the number of images might
take a minute or two. Afterwards, spreads will launch a ScanTailor process in the background, that
will generate a configuration file (stored under ~/my_book/my_book.ScanTailor). When it has finished,
it will open the ScanTailor GUI, so you can make your final adjustments to the configuration. Save and
close your project when you’re finished. spreads will then split the configuration file into as many files
as your computer has CPU cores and perform the final ScanTailor step on all of them in parallel.

Finally, once ScanTailor has completed generating the final version of your images (in the done folder),
it will generate PDF and DJVU files from them, which you will find under the ~/my_book directory.

1.3. Workflow 3

Documentation, Release 0.4

If you want to know more about any of the above steps and how you can configure them, check out the
entries for the appropriate appropriate plugins.

1.3. Workflow 4

CHAPTER 2

GUI Wizard

2.1 Enabling the GUI

To enable the GUI wizard, first make sure that you have an up-to date version of PySide installed on
your machine and linked to your virtual environment:

$ sudo apt-get install python-pyside
$ ln -s /usr/lib/python2.7/dist-packages/PySide ~/.spreads/lib/python2.7/site-packages/PySide

Then, just re-run the configure step and add gui to your list of plugins. You can launch the GUI with the
following command:

$ spread gui

2.2 Usage

On the first screen, you can adjust various settings for your scan. You have to specify a project directory
before you can continue. The rest of the settings depends on which plugins you have enabled. Select the
plugin to configure from the dropdown menu and make your adjustments.

After you’ve clicked *next*, the cameras will be prepared for capture by setting their zoom and focus
levels. At the top of the screen you can see how many pages you’ve already scanned, as well as your
current average scanning speed. The text box at the bottom of the screen will display any warnings or
error messages that occur during the capture process. Next, initiate a capture by clicking on the button
(or pressing one of the capture keys).

Once you have captured your first pages, you will see the last two pages your cameras shot. Here you
can verify that everything went as expected. Should you notice a mistake, you can discard the previous
shot and retake it by clicking on the retake button.

Once you’ve finished scanning your book and clicked on the *next* button, spreads will execute all
enabled postprocessing plugins in the sequence that you configured. You can verify the progress in the
text box.

Last, spreads will assemble the processed scans into your enabled output formats. As in the postpro-
cessing step, follow the progress via the text box.

5

Documentation, Release 0.4

Figure 2.1: Initial setup page

2.2. Usage 6

Documentation, Release 0.4

Figure 2.2: Capture page

Figure 2.3: Capture page with control images

2.2. Usage 7

Documentation, Release 0.4

Figure 2.4: Postprocessing page

Figure 2.5: Output page

2.2. Usage 8

CHAPTER 3

Installation

3.1 Prerequisites

• Python 2.7 with pip (http://www.pip-installer.org) installed

3.2 Optional requirements

To use some of the included plugins, you might want to install the following dependencies:

• chdkptp (https://www.assembla.com/spaces/chdkptp/wiki) to use cameras with the CHDK
firmware (installed in /usr/local/lib/chdkptp)

• An up-to date version of ScanTailor-enhanced (http://sourceforge.net/p/scantailor/code/ci/enhanced/tree/)

• pdfbeads (http://rubygems.org/gems/pdfbeads)

• djvubind (http://code.google.com/p/djvubind/)

• PySide (http://pyside.org) (available as python-pyside for Debian and Ubuntu)

3.3 Installing from PyPi

This will grab the latest release and install all Python dependencies:

$ sudo pip install spreads

3.4 Installing from GitHub

Like from PyPi, only using the development version from GitHub (might break, use with caution!):

$ sudo pip install git+git://github.com/jbaiter/spreads.git@master

9

http://www.pip-installer.org
https://www.assembla.com/spaces/chdkptp/wiki
http://sourceforge.net/p/scantailor/code/ci/enhanced/tree/
http://rubygems.org/gems/pdfbeads
http://code.google.com/p/djvubind/
http://pyside.org

CHAPTER 4

Configuration

Upon first launch, spreads writes a configuration file to ~/.config/spreads/config.yaml. In it, you can
change all of the available settings to your liking. The configuration options are the same ones that you
can set on the command-line, so just call spreads <command> –help to view the documentation.

Valid values: ’none’, ’debug’, ’info’, ’warning’, ’error’, ’critical’
loglevel: warning
plugins:

- autorotate
- scantailor
- tesseract
- gui
- pdfbeads
- djvubind

Options for ’capture’ step
capture:

capture_keys: [’ ’, b]
driver: dummy
colorcorrect:

true_blue: 119
true_green: 119
true_red: 119

device:
focus_distance: 384
dpi: 300
parallel_capture: yes
chdkptp_path: /usr/local/lib/chdkptp
zoom_level: 3
shoot_raw: no
sensitivity: 80
flip_target_pages: no
shutter_speed: 1/25

tesseract:
language: deu-frak

autorotate:
rotate_even: 90
rotate_odd: -90

scantailor:
margins:

- 2.5
- 2.5
- 2.5
- 2.5

10

Documentation, Release 0.4

auto_margins: yes
autopilot: no
split_pages: yes
deskew: yes
rotate: no
detection: content
content: yes

11

CHAPTER 5

Command-Line Interface

spread is spreads’ command-line interface.

It takes a command as its first argument:

$ spread [--verbose] COMMAND [ARGS...]

All of spreads’ functionality is accessible via the following commands:

5.1 wizard

$ spread wizard <project-path>

Start spreads in wizard mode. This will go through all of the steps outlined below and store images and
output files in project-path

5.2 configure

$ spread configure

This command lets you select a device driver and a set of plugins to activate. It also allows you to set
the target pages for your devices, in case you are using two devices for capturing.

5.3 capture

$ spread capture [OPTIONS] <project-director>

This command will start a capturing workflow. Make sure that your devices are turned on. After the
application is done setting them up, you will enter a loop, where all devices will trigger simultaneously
(if not configured otherwise, see below) when you press one of the capture keys (by default: the b or
spacebar key). Press r to discard the last capture and retake it. Press f to finish the capture process.

--no-parallel-capture
When using two devices, do not trigger them simultaneously but one after the other.

--flip-target-pages
When using two devices, flip the configured target pages, i.e. the camera configured to be odd

12

Documentation, Release 0.4

will temporarily be the even device and vice versa. This can be useful when you are scanning e.g.
East-Asian literature.

5.4 postprocess

$ spread postprocess [--jobs <int>] <project-directory>

Start the postprocessing workflow by calling each of the postprocessing plugins defined in the configu-
ration one after the other.The transformed images will be stored in project-directory/done.

--jobs number-of-jobs, -j number-of-jobs
Specify how many concurrent processes should be used for rotation and ScanTailor. By default,
spreads will use as many as CPU cores are available.

5.5 output

$ spread output <project-directory>

Start the output workflow, calling each of the output plugins defined in the configuration. All output files
will be stored in project-directory/out.

5.4. postprocess 13

CHAPTER 6

Plugins

spreads comes with a variety of plugins pre-installed. Plugins perform their actions at several designated
points in the workflow. They can also add specify options that can be set from one of the interfaces.

6.1 subcommand plugins

These plugins add additional commands to the spread application. This way, plugins can implement
additional workflow steps or provide alternative interfaces for the application.

6.1.1 gui

Launches a graphical interface to the workflow. The steps are the same as with the CLI wizard, addi-
tionally a small thumbnail of every captured image is shown during the capture process. Requires an
installation of the PySide packages. Refer to the GUI tutorial for more information.

6.2 postprocess plugins

An extension to the postprocess command. Performs one or more actions that either modify the captured
images or generate a different output.

6.2.1 autorotate

Automatically rotates the images according to their device of origin. By default this means -90° for odd
pages and 90° for even pages, but these can be set to arbitrary values by specifying the rotate-even
or rotate-odd options. You probably want to stick to multiples of 90°.

--rotate-even
Change rotation for images from even book pages (default: 90°)

--rotate-odd
See above, only for odd pages (default: -90°)

6.2.2 colorcorrect

Automatically fixes white balance for your scanned images. To use it, enable it in the configuration, set
the RGB values for your grey cards and ensure that the first two images you take are of your grey cards.

14

Documentation, Release 0.4

6.2.3 scantailor

Automatically generate a ScanTailor configuration file for your scanned book and generate output im-
ages from it. After the configuration has been generated, you can adjust it in the ScanTailor UI, that will
be opened automatically, unless you specified the auto option. The generation of the output images
will run on all CPU cores in parallel.

--autopilot
Run ScanTailor on on autopilot and do not require and user input during postprocessing. This
skips the step where you can manually adjust the ScanTailor configuration.

--detection <content/page> [default: content]
By default, ScanTailor will use content boundaries to determine what to include in its output. With
this option, you can tell it to use the page boundaries instead.

--no-content
Disable content detection step.

--rotate
Enable rotation step.

--no-deskew
Do not deskew images.

--no-split-pages
Do not split pages.

--no-auto-margins
Disable automatically detect margins.

6.2.4 tesseract

Perform optical character recognition on the scanned pages, using the tesseract application, that has to
be installed in order for the plugin to work. For every recognized page, a HTML document in hOCR
format will be written to project-directory/done. These files can be used by the output plugins to include
the recognized text.

--language LANGUAGE
Tell tesseract which language to use for OCR. You can get a list of all installed languages on your
system by running spread capture –help.

6.3 output plugins

An extension to the out command. Generates one or more output files from the scanned and postpro-
cessed images. Writes its output to project-directory/done.

6.3.1 pdfbeads

Generate a PDF file from the scanned and postprocessed images, using the pdfbeads tool. If OCR has
been performed before, the PDF will include a hidden text layer with the recognized text.

6.3. output plugins 15

Documentation, Release 0.4

6.3.2 djvubind

Generate a DJVU file from the scanned and postprocessed images, using the djvubind tool.

See also:

Extending spreads functionality

6.3. output plugins 16

CHAPTER 7

Extending spreads

7.1 Adding support for new devices

To support new devices, you have to subclass DevicePlugin in your module and add it as an entry
point for the spreadsplug.devices namespace to your package’s setup.py. In it, you over-
ride and implement the features supported by your device. Take a look at the plugin for CHDK-based
cameras (https://github.com/jbaiter/spreads/blob/master/spreadsplug/dev/chdkcamera.py) and the rele-
vant part of spreads’ setup.py (https://github.com/jbaiter/spreads/blob/master/setup.py) for a reference
implementation.

Devices are assigned a DevicePlugin implementation based on their USB device’s properties. This
means that you can support a whole range of devices with a single DevicePlugin implementation, if
you know a set of attributes that apply to all of them.

7.2 Extending spreads built-in commands

You can extend all of spread’s built-in commands with your own code. To do, you just have to inherit
from the HookPlugin class and implement one or more of its hooks. Furthermore, you have to add an
entry point for that class in the spreadsplug.hooks namespace in your package’s setup.py file.
For a list of available hooks and their options, refer to the API documentation. Example implementations
can be found on GitHub (https://github.com/jbaiter/spreads/blob/master/spreadsplug)

See also:

module spreads.plugin, module spreads.util

7.3 Adding new commands

You can also add entirely new commands to the application. Simply subclass HookPlugin again,
implement the add_command_parser method and add your new class as an entry point to the
spreadsplug.hooks namespace. Your plugin class will most probably be a very few lines, telling
the CLI parser its name, arguments and pass a function that will do the main work.

17

https://github.com/jbaiter/spreads/blob/master/spreadsplug/dev/chdkcamera.py
https://github.com/jbaiter/spreads/blob/master/spreadsplug/dev/chdkcamera.py
https://github.com/jbaiter/spreads/blob/master/setup.py
https://github.com/jbaiter/spreads/blob/master/setup.py
https://github.com/jbaiter/spreads/blob/master/spreadsplug

CHAPTER 8

Frequently Asked Questions

8.1 CHDK Cameras

... When capturing, the commands frequently time out.

This is a known issue when both cameras are connected to the same USB hub. It seems to
occur less frequently with powered USB hubs, but the safest way to avoid these hickups is
to connect each device to a separate USB hub/port. You might also want to try another USB
cable.

... USBError: [Errno 13] Access denied (insufficient permissions)

This means that your user is not allowed to write to the camera devices. To temporarily
fix this, run $ sudo chmod -R a+rw /dev/bus/usb/*. To permanently fix the
permissions, create a new udev rule that sets the permissions when the devices are plugged
in.

18

CHAPTER 9

API Reference

9.1 spreads.plugin

class spreads.plugin.PluginOption(value, docstring=None, selectable=False)
A configuration option.

Attr value The default value for the option or a list of available options if :attr se-
lectable: is True

Attr docstring A string explaining the configuration option

Attr selectable Make the PluginOption a selectable, i.e. value contains a list or tu-
ple of acceptable values for this option, with the first member being the default
selection.

__init__(value, docstring=None, selectable=False)

class spreads.plugin.SpreadsPlugin(config)
Plugin base class.

classmethod configuration_template()
Allows a plugin to define its configuration keys.

The returned dictionary has to be flat (i.e. no nested dicts) and contain a PluginOption object
for each key.

Example:

{
’a_setting’: PluginOption(value=’default_value’),
’another_setting’: PluginOption(value=[1, 2, 3],

docstring="A list of things"),
In this case, ’full-fat’ would be the default value
’milk’: PluginOption(value=(’full-fat’, ’skim’),

docstring="Type of milk",
selectable=True),

}

Returns dict with unicode: PluginOption(value, docstring, selection)

__init__(config)
Initialize the plugin.

19

Documentation, Release 0.4

Parameters config (confit.ConfigView) – The global configuration object, by de-
fault only the section with plugin-specific values gets stored in the config at-
tribute, if the plugin has a __name__ attribute.

class spreads.plugin.DevicePlugin(config, device)
Base class for devices.

Subclass to implement support for different devices.

features = ()
Tuple of DeviceFeatures constants that designate the features the device offers.

__init__(config, device)
Set connection information and other properties.

Parameters

• config (spreads.confit.ConfigView) – spreads configuration

• device (usb.core.Device (http://github.com/walac/pyusb)) – USB device to
use for the object

set_target_page(target_page)
Set the device target page, if applicable.

Parameters target_page (unicode in (u”odd”, u”even”)) – The target page

prepare_capture(path)
Prepare device for scanning.

What this means exactly is up to the implementation and the type, of device, usually it
involves things like switching into record mode, path and applying all relevant settings.

Parameters path (pathlib.Path) – Project base path

capture(path)
Capture a single image with the device.

Parameters path (pathlib.Path) – Path for the image

class spreads.plugin.HookPlugin(config)
Add functionality to any of spreads’ commands by implementing one or more of the available
hooks.

classmethod add_command_parser(rootparser)

Allows a plugin to register a new command with the command-line parser. The sub-
parser that is added to :param rootparser: should set the class’ __call__ method as
the func (via set_defaults) that is executed when the subcommand is specified
on the CLI.

Parameters rootparser (argparse.ArgumentParser) – The root parser that this
plugin should add a subparser to.

prepare_capture(devices, path)
Perform some action before capturing begins.

Parameters

• devices (list(DevicePlugin)) – The devices used for capturing

9.1. spreads.plugin 20

http://github.com/walac/pyusb

Documentation, Release 0.4

• path (pathlib.Path) – Project path

capture(devices, path)
Perform some action after each successful capture.

Parameters

• devices (list(DevicePlugin)) – The devices used for capturing

• path (pathlib.Path) – Project path

finish_capture(devices, path)
Perform some action after capturing has finished.

Parameters

• devices (list(DevicePlugin)) – The devices used for capturing

• path (pathlib.Path) – Project path

process(path)

Perform one or more actions that either modify the captured images or generate a dif-
ferent output.

Parameters path (pathlib.Path) – Project path

output(path)
Assemble an output file from the postprocessed images.

Parameters path (pathlib.Path) – Project path

__init__(config)
Initialize the plugin.

Parameters config (confit.ConfigView) – The global configuration object, by de-
fault only the section with plugin-specific values gets stored in the config at-
tribute, if the plugin has a __name__ attribute.

classmethod configuration_template()
Allows a plugin to define its configuration keys.

The returned dictionary has to be flat (i.e. no nested dicts) and contain a PluginOption object
for each key.

Example:

{
’a_setting’: PluginOption(value=’default_value’),
’another_setting’: PluginOption(value=[1, 2, 3],

docstring="A list of things"),
In this case, ’full-fat’ would be the default value
’milk’: PluginOption(value=(’full-fat’, ’skim’),

docstring="Type of milk",
selectable=True),

}

Returns dict with unicode: PluginOption(value, docstring, selection)

9.1. spreads.plugin 21

Documentation, Release 0.4

spreads.plugin.get_devices(config)
Initialize configured devices.

spreads.plugin.get_relevant_extensions(plugin_manager, hooks)
Find all extensions that implement certain hooks.

Parameters hooks (list(unicode)) – A list of hook method names

Returns A generator that yields relevant extensions

Return type generator(Extension)

9.2 spreads.util

Various utility functions.

spreads.util.find_in_path(name)
Find executable in $PATH.

Parameters name (unicode) – name of the executable

Returns bool – True if name is found or False

class spreads.util.abstractclassmethod(func)
New decorator class that implements the @abstractclassmethod decorator added in Python 3.3 for
Python 2.7.

Kudos to http://stackoverflow.com/a/13640018/487903

__init__(func)

class spreads.util.ColourStreamHandler(stream=None)
A colorized output SteamHandler Kudos to Leigh MacDonald:
http://leigh.cudd.li/article/Cross_Platform_Colorized_Logger_Output_Using_Pythons_logging_Module_And_Colorama

is_tty
Check if we are using a “real” TTY. If we are not using a TTY it means that the colour output
should be disabled.

Returns Using a TTY status

Return type bool

9.2. spreads.util 22

http://stackoverflow.com/a/13640018/487903
http://leigh.cudd.li/article/Cross_Platform_Colorized_Logger_Output_Using_Pythons_logging_Module_And_Colorama

CHAPTER 10

Changelog

10.1 0.4.2 (2014/01/05)

• Fix packaging issues

• Small bugfix for older Tesseract versions

10.2 0.4.1 (2013/12/25)

• Fix ‘spread’ tool

• Include missing vendor package in distribution

10.3 0.4 (2013/12/25)

• Use chdkptp utility for controlling cameras with CHDK firmware

• Fix instability when shooting with CHDK cameras

• Shoot images in RAW/DNG file format (experimental)

• Remove download step, images will be directly streamed to the project directory

• Remove combine plugin, images will be combined in capture step

• Device driver and plugins, as well as their order of execution can be set interactively via the
configure subcommand, which has to be run before the first usage.

• Lots of internal API changes

10.4 0.3.3 (2013/08/28)

• Fix typo in device manager that prevent drivers from being loaded

10.5 0.3.2 (2013/08/24)

• Fixes a critical bug in the devices drivers

23

Documentation, Release 0.4

10.6 0.3.1 (2013/08/23)

• Fixes a bug that prevented spreads to be installed

10.7 0.3 (2013/08/23)

• Plugins can add completely new subcommands.

• GUI plugin that provides a graphical workflow wizard.

• Tesseract plugin that can perform OCR on captured images.

• pdfbeads plugin can include recognized text in a hidden layer if OCR has been performed before-
hand.

• Use EXIF tags to persist orientation information instead of JPEG comments.

• Better logging with colorized output

• Simplified multithreading/multiprocessing code

• CHDK driver is a lot more stable now

10.8 0.2 (2013/06/30)

• New plugin system based on Doug Hellmann’s stevedore package, allows packages to extend
spreads without being included in the core distribution

• The driver for CHDK cameras no longer relies on gphoto2 and ptpcam, but relies on Abel Deur-
ing’s pyptpchdk package to communicate with the cameras.

• Wand is now used to deal with image data instead of Pillow

• New ‘colorcorrection’ plugin allows users to automatically correct white balance.

• Improved tutorial

10.9 0.1 (2013/06/23)

• Initial release

10.6. 0.3.1 (2013/08/23) 24

Python Module Index

s
spreads.plugin, 19
spreads.util, 22

25

Index

Symbols
–autopilot

command line option, 15
–detection <content/page> [default: content]

command line option, 15
–flip-target-pages

spread-capture command line option, 12
–jobs number-of-jobs, -j number-of-jobs

spread-postprocess command line option, 13
–language LANGUAGE

command line option, 15
–no-auto-margins

command line option, 15
–no-content

command line option, 15
–no-deskew

command line option, 15
–no-parallel-capture

spread-capture command line option, 12
–no-split-pages

command line option, 15
–rotate

command line option, 15
–rotate-even

command line option, 14
–rotate-odd

command line option, 14
__init__() (spreads.plugin.DevicePlugin method),

20
__init__() (spreads.plugin.HookPlugin method),

21
__init__() (spreads.plugin.PluginOption method),

19
__init__() (spreads.plugin.SpreadsPlugin method),

19
__init__() (spreads.util.abstractclassmethod

method), 22

A
abstractclassmethod (class in spreads.util), 22
add_command_parser()

(spreads.plugin.HookPlugin class
method), 20

C
capture() (spreads.plugin.DevicePlugin method),

20
capture() (spreads.plugin.HookPlugin method), 21
ColourStreamHandler (class in spreads.util), 22
command line option

–autopilot, 15
–detection <content/page> [default: content],

15
–language LANGUAGE, 15
–no-auto-margins, 15
–no-content, 15
–no-deskew, 15
–no-split-pages, 15
–rotate, 15
–rotate-even, 14
–rotate-odd, 14

configuration_template()
(spreads.plugin.HookPlugin class
method), 21

configuration_template()
(spreads.plugin.SpreadsPlugin class
method), 19

D
DevicePlugin (class in spreads.plugin), 20

F
features (spreads.plugin.DevicePlugin attribute),

20
find_in_path() (in module spreads.util), 22
finish_capture() (spreads.plugin.HookPlugin

method), 21

26

Documentation, Release 0.4

G
get_devices() (in module spreads.plugin), 21
get_relevant_extensions() (in module

spreads.plugin), 22

H
HookPlugin (class in spreads.plugin), 20

I
is_tty (spreads.util.ColourStreamHandler at-

tribute), 22

O
output() (spreads.plugin.HookPlugin method), 21

P
PluginOption (class in spreads.plugin), 19
prepare_capture() (spreads.plugin.DevicePlugin

method), 20
prepare_capture() (spreads.plugin.HookPlugin

method), 20
process() (spreads.plugin.HookPlugin method), 21

S
set_target_page() (spreads.plugin.DevicePlugin

method), 20
spread-capture command line option

–flip-target-pages, 12
–no-parallel-capture, 12

spread-postprocess command line option
–jobs number-of-jobs, -j number-of-jobs, 13

spreads.plugin (module), 19
spreads.util (module), 22
SpreadsPlugin (class in spreads.plugin), 19

Index 27

	Command-Line Tutorial
	Installation
	Configuration
	Workflow

	GUI Wizard
	Enabling the GUI
	Usage

	Installation
	Prerequisites
	Optional requirements
	Installing from PyPi
	Installing from GitHub

	Configuration
	Command-Line Interface
	wizard
	configure
	capture
	postprocess
	output

	Plugins
	subcommand plugins
	postprocess plugins
	output plugins

	Extending spreads
	Adding support for new devices
	Extending spreads built-in commands
	Adding new commands

	Frequently Asked Questions
	CHDK Cameras

	API Reference
	spreads.plugin
	spreads.util

	Changelog
	0.4.2 (2014/01/05)
	0.4.1 (2013/12/25)
	0.4 (2013/12/25)
	0.3.3 (2013/08/28)
	0.3.2 (2013/08/24)
	0.3.1 (2013/08/23)
	0.3 (2013/08/23)
	0.2 (2013/06/30)
	0.1 (2013/06/23)

	Python Module Index

