

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	
 next |

 	spreads 0.5git20150526.c802 documentation

	Installation
	Prerequisites

	Install requirements

	Installing the core from PyPi

	Installing plugin dependencies

	Installing a nightly build

	Configuration
	Initial configuration

	Configuration file

	SpreadPi Setup

	Web Interface
	Installation

	Startup and Configuration

	Interface

	Graphical Interface
	Installation

	Startup and Configuration

	Interface

	Command-Line Interface
	Startup and Configuration

	Frequently Asked Questions
	CHDK Cameras

	Device Drivers
	chdkcamera

	gphoto2camera

	Plugins
	subcommand plugins

	postprocess plugins

	output plugins

	Contributing

	Extending spreads
	Setting up a development environment

	Adding support for new devices

	Declaring available configuration options for plugins

	Extending spreads built-in commands

	Adding new commands

	API Reference
	spreads API Reference

	spreadsplug

	HTTP API

	Changelog
	0.5 (2014/03/??)

	0.4.2 (2014/01/05)

	0.4.1 (2013/12/25)

	0.4 (2013/12/25)

	0.3.3 (2013/08/28)

	0.3.2 (2013/08/24)

	0.3.1 (2013/08/23)

	0.3 (2013/08/23)

	0.2 (2013/06/30)

	0.1 (2013/06/23)

About Spreads

spreads is a software suite for the digitization of printed material. Its main
focus is to integrate existing solutions for individual parts of the scanning
workflow into a cohesive package that is intuitive to use and easy to extend.

At its core, it handles the communication with the imaging devices, the
post-processing of the captured material and its assembly into output formats
like PDF or ePub. On top of this base layer, we have built a variety of
interfaces that should fit into most use cases: A full-fledged and
mobile-friendly web interface that works on even the most
low-powered devices (like a Raspberry Pi, through the spreadpi distribution), a
graphical wizard for classical desktop users and a bare-bones
command-line interface for purists.

As for extensibility, we offer a plugin API that allows developers to hook into
almost every part of the architecture and extend the application according to
their needs. There are interfaces for developing a device driver to communicate with new hardware, for writing new postprocessing
or output plugins to take advantage of a as of yet unsupported third-party
software. There is even the possibility to create a completely new user
interface that is better suited for specific environments.

The spreads core is completely written in the Python programming language,
which is widespread, easy to read and to learn (and beautiful on top of that).
Individual plugins also contain parts written in JavaScript and Lua. Through
the web-plugin it also offers a REST(-ish) API that can be
accessed with any programming language that has a HTTP library.

To get started with the software, we suggest you begin by reading the
Introductory Notes that lay out the general workflow of the application and
explain some of the terminology used across all interfaces. Then, if you want
to install and configure the software yourself, head over to the
Installation and Setup guide. If you are a user of the
spreadpi distribution or plan on using it, use the spreadpi guide.

Note

In case you’re wondering about the choice of mascot, the figure depicted is
a Benedictine monk in his congregation’s traditional costume, sourced from
a series of 17th century etchings [http://commons.wikimedia.org/wiki/Category:Clothing_of_religious_orders_by_Wenzel_Hollar] by the Bohemian artist Wenceslaus
Hollar [http://en.wikipedia.org/wiki/Wenceslaus_Hollar], depicting the robes of various religious orders. The book he
holds in his hand is no accident, but was likely delibaretely chosen by the
artist: The Benedictines [http://en.wikipedia.org/wiki/Order_of_Saint_Benedict] used to be among the most prolific copiers of
books [http://en.wikipedia.org/wiki/Scriptorium] in the middle-ages, preserving Europe’s written cultural heritage,
book spread for book spread, in a time when a lot of it was in danger of
perishing. spreads wants to help you do the same in the present day.
Furthermore, the Benedictines were (and still are) very active
missionaries, going out into the world and spreading ‘the word’. spreads
wants you to do the same with your digitized books (within the boundaries
of copyright law, of course).

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	
 next |

 	
 previous |

 	spreads 0.5git20150526.c802 documentation

Installation

Prerequisites

	Python 2.7 with a recent version of pip [http://www.pip-installer.org] installed

Install requirements

To use some of the included plugins, you might want to install the following
dependencies:

	chdkptp [https://www.assembla.com/spaces/chdkptp/wiki] to use cameras with the CHDK firmware (installed in
/usr/local/lib/chdkptp)

	An up-to date version of ScanTailor-enhanced [http://sourceforge.net/p/scantailor/code/ci/enhanced/tree/]

	pdfbeads [http://rubygems.org/gems/pdfbeads]

	djvubind [http://code.google.com/p/djvubind/]

	PySide [http://pyside.org] (available as python-pyside for Debian and Ubuntu)

	libgphoto2 [http://www.gphoto.org]

Installing the core from PyPi

This will grab the latest release and install all Python dependencies:

$ sudo pip install spreads

Installing plugin dependencies

This will grab all Python dependencies for the selected plugins:

$ sudo pip install spreads[chdkcamera,web,hidtrigger]

Adjust the list of plugins as needed.

Installing a nightly build

Like from PyPi, only using the latest development version (might break, use
with caution!):

$ sudo pip install http://buildbot.diybookscanner.org/nightly/spreads-latest.tar.gz

Configuration

Initial configuration

To perform the initial configuration, launch the either the configure
subcommand or its graphical counterpart, guiconfigure:

$ spread configure
or
$ spread guiconfigure

The following instructions are mostly target at users of the CLI configuration
interface, but all of the available settings are also equally available from
the GUI and should be pretty self-explanatory.

You will be asked to select a device driver and some plugins. Next, configure
the order in which your postprocessing plugins should be invoked. Think of
it as a pipelining system, where each of the plugin gets fed the output
of its predecessor.

Next, if you are using two cameras for scanning, your can the target pages for
each of your cameras. This is necessary, as the application has to:

	combine the images from both cameras to a single directory in the right order

	set the correct rotation for the captured images

To do both of these things automatically, the application needs to know if the
image is showing an odd or even page. Don’t worry, you only have to perform
this step once, the orientation is stored on the camera’s memory card (under
A/OWN.TXT). Should you later wish to briefly flip the target pages, you can
do so via the –flip-target-pages command-line flag.

Note

If you are using a DIYBookScanner and the book is facing you, the device
for odd pages is the camera on the left, the one for even pages on
the right.

After that, you can choose to setup the focus for your devices. By default,
the focus will be automatically detected on each shot. But this can lead to
problems: Since the camera uses the center of the frame to obtain its focus,
your images will be out of focus in cases where the center of the page does not
have any text on it, e.g. in chapter endings. This step is therefore
recommended for most users. Before you continue, make sure that you have loaded
a book into the scanner, and that the pages facing the camera are evenly filled
with text or illustrations.

Once you’re done, you can find the configuration file in the .config/spreads
folder in your home directory.

Configuration file

spreads writes its configuration file to ~/.config/spreads/config.yaml. In
it, you can change all of the available settings to your liking. The
configuration options are the same ones that you can set on the command-line,
so just call spreads <command> –help to view the documentation. Command-line
flags that begin with –no-... should be entered without the no prefix and
have yes or no as their value.

Here is an example that demonstrates the general layout:

Names of activated plugins, postprocessing plugins will be called
in the order that they are entered here
plugins: [gui, autorotate, scantailor]

Name of the device driver
driver: chdkcamera

core:
 # Enable verbose output on command-line
 verbose: no
 # Keys that trigger a capture in command-line interface
 capture_keys: [' ', b]
 # Path to logfile
 logfile: ~/.config/spreads/spreads.log
 # Loglevel for logfile
 loglevel: info

Device settings
device:
 parallel_capture: yes
 flip_target_pages: no

Plugin settings
tesseract:
 language: deu-frak

scantailor:
 autopilot: no

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	
 next |

 	
 previous |

 	spreads 0.5git20150526.c802 documentation

SpreadPi Setup

Materials needed:

	Raspberry Pi (Model B+ recommended)

	network cable

	Class10 SD Card (lower clases will slow down operations significantly).
See this list [http://elinux.org/RPi_SD_cards#SD_card_performance] for SD cards known to work well with the Raspberry Pi.

	free ethernet port in your router/switch

	Download the latest version of the SpreadPi disk image of SpreadPi from the
buildbot [http://buildbot.diybookscanner.org/nightly]. It contains a fully configured Linux operating system and a
complete installation of Spreads, ready to run.

	Extract the image with 7-Zip [http://www.7-zip.org/download.html] and follow the tutorial matching your
operating system to copy SpreadPi to the SD-Card that goes into the
Raspberry Pi: Windows [http://elinux.org/RPi_Easy_SD_Card_Setup#Flashing_the_SD_Card_using_Windows] / OS X [http://elinux.org/RPi_Easy_SD_Card_Setup#Flashing_the_SD_card_using_Mac_OSX] / Linux [http://elinux.org/RPi_Easy_SD_Card_Setup#Flashing_the_SD_Card_using_Linux_.28including_on_a_Pi.21.29].

Note

For most situations, this is all you need to configure the Pi. For advanced
users and occasional problematic setups, it is possible to SSH into the Pi
and configure it manually. You have to use the following credentials:

	Username:

	spreads

	Password

	spreads

	Root-Password:

	raspberry

	Now that the Pi has an operating system, we need to configure our devices.
SpreadPi currently assumes that the user is running CHDK devices, so check
the driver documentation for how to correctly set up the cameras.

	Connect the network cable to the Pi and your router or switch. Connect all
devices. Turn on the devices first, and only then turn on the Pi. The Pi
takes a few minutes to boot for the first time - be patient. It will reboot
once to resize the image to fit the whole SD-Card. Spreads is getting an IP
address from your network and will display that IP address on the screens of
your cameras for you when it is ready to begin.

	Spreads has an easy-to-use web interface. Open a browser on any device that
is on the same network as your scanner. If your smartphone or tablet is on
your home WiFi network, you can use it to the scanner. To connect to it,
enter the IP address that was displayed on the camera screen. Refer to the
web plugin documentation for more information on how to use the interface.

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	
 next |

 	
 previous |

 	spreads 0.5git20150526.c802 documentation

Web Interface

Installation

To install the required dependencies for the web plugin, run the following
command:

$ pip install spreads[web]

Alternatively, make sure you have the following modules installed in their
most recent versions:

	Flask

	Flask-Compress

	jpegtran-cffi

	requests

	waitress

	zipstream

To use the JavaScript web interface, make sure you use a recent version of
Firefox or Chrome.

Startup and Configuration

You can launch the web interface with its subcommand:

$ spread web [OPTIONS]

This will serve the spreads web interface and its RESTish-API for the whole
network. There are a number of options available:

	
--port <int>

	Port that the web application is listening on. By default this is 5000

	
--mode <full/scanner/processor>

	Mode to run the web plugin in. scanner only exposes functionality that
is needed for scanning, while processor only exposes functionality that
is needed for postprocessing and output generation. full exposes all
available functionality.
Instances of spreads running in scanner mode can transfer their workflows
to other instances on the network that run in processor mode and let
them take care of the postprocessing and output generation.

	
--postprocessing-server <address>

	Select a default postprocesisng server to user. This is only useful if
the web plugin is running in scanner mode and the user is planning to
transfer workflows to another spreads instance on the network (see above).
This configures a default address for such a server that is always shown.

	
--standalone-device

	Enable standalone mode. This option can be used for devices that are
dedicated to scanning (e.g. a RaspberryPi that runs spreads and nothing
else). At the moment the only additional features it enables is the ability
to shutdown and reboot the device from the web interface and REST API.

	
--debug

	Run the application in debugging mode. This activates source maps in the
client-side code, which will increase the initial loading time significantly.

	
--project-dir <path>

	Location where workflow files are stored. By default this is ~/scans.

Interface

You can connect to the interface by opening your browser on an address that
looks like this:

http://<host-ip-address>:<web-port>

If you are running spreads in your local machine, using localhost or
127.0.0.1 for the IP address will be enough. If you are running it on a
remote machine, you will have to find out its IP address. When you are
using CHDK cameras and have them turned on when you launch spreads, their
displays will show the IP address of the computer they are connected to.
The web-port is by default configured to be 5000, though this can
be configured.

The initial screen will list all previously created workflows with a small
preview image and some information on their status. On clicking one of the
workflows, you will be taken to its details page where you can view all of the
images and see more information on it. You can also choose to download a ZIP or
TAR file with the workflow, containing all images and a configuration file.

From the navigation bar, you can choose to create a new workflow. The only
metadata you absolutely have to enter is the workflow name. Note that when you
enter a name, you will be offered a selection of ISBN records that might match
your title. If you select one of these, the rest of the fields will be filled
out automatically.

You can also change driver and plugin settings for this workflow by selecting
either one from the dropdown menu. For a reference on what the various options
mean, please consult the documentation of the repsective plugin or driver.
When you are done, you can submit the workflow and the application will take
you to the capture screen.

On the capture screen, you can see two small review images with which
you can verify that the last capture went well. Trigger a new capture by
clicking the appropriate button and you will see the images update.

If you spotted an error, you can click the Retake button, which will discard
the last capture and trigger a new one. Note that the new capture will be
triggered immediately, there is no need to use the capture button.
Once you are done, use the finish button.

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	
 next |

 	
 previous |

 	spreads 0.5git20150526.c802 documentation

Graphical Interface

Installation

To enable the GUI wizard, first make sure that you have an up-to date version
of PySide installed on your machine.

Then, just re-run the configure step and add gui to your list of plugins.

Startup and Configuration

You can launch the GUI with the following command:

$ spread gui

Interface

On the first screen, you can adjust various settings for
your scan. You have to specify a project directory before you can continue. The
rest of the settings depends on which plugins you have enabled. Select the
plugin to configure from the dropdown menu and make your adjustments.

[image: _images/wizard1.png]
Initial setup page

After you’ve clicked *next*, the cameras will be prepared
for capture by setting their zoom and focus levels. At the top of the screen
you can see how many pages you’ve already scanned, as well as your current
average scanning speed. The text box at the bottom of the screen will display
any warnings or error messages that occur during the capture process. Next,
initiate a capture by clicking on the button (or pressing one of the capture
keys).

[image: _images/wizard2.png]
Capture page

Once you have captured your first pages, you will
see the last two pages your cameras shot. Here you can verify that everything
went as expected. Should you notice a mistake, you can discard the previous
shot and retake it by clicking on the retake button.

[image: _images/wizard3.png]
Capture page with control images

Once you’ve finished scanning your book and clicked on the *next*
button, spreads will execute all enabled postprocessing
plugins in the sequence that you configured. You can verify the progress in the
text box.

[image: _images/wizard4.png]
Postprocessing page

Last, spreads will assemble the processed scans into your
enabled output formats. As in the postprocessing step, follow the progress via
the text box.

[image: _images/wizard5.png]
Output page

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	
 next |

 	
 previous |

 	spreads 0.5git20150526.c802 documentation

Command-Line Interface

Startup and Configuration

$ spread wizard <project-path>

Start spreads in wizard mode. This will go through all of the steps outlined
below and store images and output files in project-path. The command-line
flags are the same as for the capture, process and output commands.

$ spread capture [OPTIONS] <project-directory>

This command will start a capturing workflow. Make sure that your devices are
turned on. After the application is done setting them up, you will enter a
loop, where all devices will trigger simultaneously (if not configured
otherwise, see below) when you press one of the capture keys (by default:
the b or spacebar key). Press r to discard the last capture and
retake it. Press f to finish the capture process.

	
--no-parallel-capture

	When using two devices, do not trigger them simultaneously but one after the
other.

	
--flip-target-pages

	When using two devices, flip the configured target pages, i.e. the camera
configured to be odd will temporarily be the even device and vice versa.
This can be useful when you are scanning e.g. East-Asian literature.

$ spread postprocess <project-directory>

Start the postprocessing workflow by calling each of the postprocessing
plugins defined in the configuration one after the other.The
transformed images will be stored in project-directory/done.

$ spread output <project-directory>

Start the output workflow, calling each of the output plugins defined in the configuration. All output files will be stored
in project-directory/out.

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	
 next |

 	
 previous |

 	spreads 0.5git20150526.c802 documentation

Frequently Asked Questions

CHDK Cameras

... When capturing, the commands frequently time out.

This is a known issue when both cameras are connected to the same USB hub.
It seems to occur less frequently with powered USB hubs, but the safest
way to avoid these hickups is to connect each device to a separate USB
hub/port. You might also want to try another USB cable.

... USBError: [Errno 13] Access denied (insufficient permissions)

This means that your user is not allowed to write to the camera devices.
To temporarily fix this, run $ sudo chmod -R a+rw /dev/bus/usb/*.
To permanently fix the permissions, create a new udev rule that sets
the permissions when the devices are plugged in.

... [Error: :80: attempt to call global 'get_gui_screen_width' (a nil value)]

spreads requires CHDK version 1.3.0 or later; you probably have the stable branch v1.2.0 installed on your camera.

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	
 next |

 	
 previous |

 	spreads 0.5git20150526.c802 documentation

Device Drivers

In order for your capture device to work with spreads, you need to tell the
application which driver it is supposed to use.
This can be either done by running the configure subcommand and selecting
one from the provided list or by manually editing the configuration file
in .config/spreads/config.yaml in your home directory.

Currently, the following drivers are available:

chdkcamera

This driver should work with any Canon camera that runs the custom CHDK [http://chdk.wikia.com]
firmware in version 1.3 or higher.

For it to work, the chdkptp [http://www.assembla.com/spaces/chdkptp] application must be installed in
/usr/local/lib/chdkptp (though that path can be configured, see below).
You also need to install the pyusb package, with either of the following
two commands:

$ pip install spreads[chdkcamera]
$ pip install pyusb

The following cameras have been tested and confirmed to work:

	A2200

	A810

	A410

If you own another CHDK-supported camera and have problems getting it to run
with this driver, please open an issue on GitHub [http://github.com/DIYBookScanner/spreads/issues], we would love to make
it work.

The following configuration keys/command-line flags are available:

	
--sensitivity <int>

	The ISO sensitivity value as a whole number. Default is 80.

	
--shutter-speed <fraction>

	The desired shutter speed as a fractional value. Default is 1/25.
The equivalent key in the configuration file is shutter_speed.

	
--zoom-level <int>

	The desired zoom-level as a whole number. Default is 3. Make sure that
this value is supported by your camera, or else you will get an error.
The equivalent key in the configuration file is zoom_level.

	
--dpi <int>

	The resolution in dots per inch that the camera captures at the given
zoom level. Default is 300. You can determine this value yourself by
taking a picture of an object with known dimensions, measuring its size
in pixels and calculate the dots per inch from that.

	
--shoot-raw

	Shoot RAW images instead of JPEG. Please note that this setting is
highly experimental at the moment and RAW files are not supported
by the postprocessing and output plugins as of now.
The equivalent key in the configuration file is shoot_raw.

	
--focus-distance <int/auto>

	This option allows the user to set a fixed focus distance for the cameras
by specifying a whole number. This value can be obtained and automatically
set in the configuration fileby running the configure command and
following the instructions. By default, this value is set to auto,
which means that the camera will automatically re-focus for each capture,
which might give problems when there is no text or images in the center
of the image.
The equivalent key in the configuration file is focus_distance

	
--chdkptp-path <path>

	Specify where the application can locate the chdkptp files. By default
this is /usr/local/lib/chdkptp.

gphoto2camera

This driver works with many PTP compatible camera. The full list of
compatible cameras can be found here: http://www.gphoto.org/doc/remote/

For it to work, the following must be installed:

	libgphoto2: http://www.gphoto.org/
This provides the low-level PTP interface.

You can either build from source (http://sourceforge.net/projects/gphoto/files/)
or install via your local package manager (apt, brew, etc).

	For example, on Mac OS X with brew installed:

	$ brew install gphoto2 libgphoto2

	piggyphoto: https://github.com/YesVideo/piggyphoto
This is the python interface to libgphoto2. The original source is
https://github.com/alexdu/piggyphoto (our pull request to merge is pending).

	The easiest way to install is:

	$ pip install -e git://github.com/YesVideo/piggyphoto#egg=piggyphoto

The following cameras have been tested and confirmed to work:

	Canon T2i

	Canon 5D mk2

If you own another libgphoto2-supported camera and have problems getting it to run
with this driver, please open an issue on GitHub [http://github.com/DIYBookScanner/spreads/issues], we would love to make
it work.

The following configuration keys/command-line flags are available:

	
--iso <string>

	The ISO value. Default is ‘Auto’.

	
--shutter-speed <fraction>

	The desired shutter speed as a fractional value. Default is 1/25.
The equivalent key in the configuration file is shutter_speed.

	
--aperture <float>

	The desired aperture expressed as an f-stop (without the ‘f/’ prefix). Default is 5.6.
The equivalent key in the configuration file is aperture.

	
--shoot-raw

	Shoot RAW images instead of JPEG. Please note that this setting is
highly experimental at the moment and RAW files are not supported
by the postprocessing and output plugins as of now.
The equivalent key in the configuration file is shoot_raw.

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	
 next |

 	
 previous |

 	spreads 0.5git20150526.c802 documentation

Plugins

spreads comes with a variety of plugins pre-installed. Plugins perform their
actions at several designated points in the workflow. They can also add
specify options that can be set from one of the interfaces.

subcommand plugins

These plugins add additional commands to the spread application. This way,
plugins can implement additional workflow steps or provide alternative interfaces
for the application.

gui

Launches a graphical interface to the workflow. The steps are the same as with
the CLI wizard, additionally a small thumbnail of every
captured image is shown during the capture process. Requires an installation of
the PySide packages. Refer to the GUI tutorial for more
information.

web

Launches the spread web interface that offers a REST-ish API with which you
can control the application from any HTTP client. It also includes a
client-side JavaScript application that can be used from any recent browser
(Firefox or Chrome recommended). Fore more details, consult the Web interface
documentation <web_doc> and the REST API documentation <rest_api>

	
--standalone-device

	Enable standalone mode. This option can be used for devices that are
dedicated to scanning (e.g. a RaspberryPi that runs spreads and nothing
else). At the moment the only additional feature it enables is the ability
to shutdown the device from the web interface and REST API.

	
--debug

	Run the application debugging mode.

	
--project-dir <path>

	Location where workflow files are stored. By default this is ~/scans.

	
--mode [scanner, processor, full (default)]

	Select the mode the web plugin is supposed to run in.
scanner: Only offer components neccessary for capture and
download/submission to a postprocessing server
processor: Start as a postprocessing server that can receive workflows over
the network from other ‘scanner’ instances
full: Combines the above two modes, allows for capture and
postprocessing/output generation on the same machine

	
--port <port> (default: 5000)

	Select port on which the web plugin is supposed to listen on

postprocess plugins

An extension to the postprocess command. Performs one or more actions that
either modify the captured images or generate a different output.

autorotate

Automatically rotates the images according to their device of origin.

scantailor

Automatically generate a ScanTailor configuration file for your scanned book
and generate output images from it. After the configuration has been generated,
you can adjust it in the ScanTailor UI, that will be opened automatically,
unless you specified the auto option. The generation of
the output images will run on all CPU cores in parallel.

	
--autopilot

	Run ScanTailor on on autopilot and do not require and user input during
postprocessing. This skips the step where you can manually adjust the
ScanTailor configuration.

	
--detection <content/page> [default: content]

	By default, ScanTailor will use content boundaries to determine what to
include in its output. With this option, you can tell it to use the page
boundaries instead.

	
--no-content

	Disable content detection step.

	
--rotate

	Enable rotation step.

	
--no-deskew

	Do not deskew images.

	
--no-split-pages

	Do not split pages.

	
--no-auto-margins

	Disable automatically detect margins.

tesseract

Perform optical character recognition on the scanned pages, using the
tesseract application, that has to be installed in order for the plugin to
work. For every recognized page, a HTML document in hOCR format will be written
to project-directory/done. These files can be used by the output plugins
to include the recognized text.

	
--language LANGUAGE

	Tell tesseract which language to use for OCR. You can get a list of all
installed languages on your system by running spread capture –help.

output plugins

An extension to the out command. Generates one or more output files from
the scanned and postprocessed images. Writes its output to project-directory/done.

pdfbeads

Generate a PDF file from the scanned and postprocessed images, using the
pdfbeads tool. If OCR has been performed before, the PDF will include a
hidden text layer with the recognized text.

djvubind

Generate a DJVU file from the scanned and postprocessed images, using the
djvubind tool.

See also

Extending spreads functionality

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	
 next |

 	
 previous |

 	spreads 0.5git20150526.c802 documentation

Contributing

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	
 next |

 	
 previous |

 	spreads 0.5git20150526.c802 documentation

Extending spreads

Setting up a development environment

The easiest way to work on spreads is to install it to an editable
virtual Python environment using the virtualenv tool and installing
spreads into it using pip with the
-e option. This option allows the virtual environment to treat a
spreads repository checked out from git as a live installation.

For example, on a Debian-based system, assuming the git repository
for spreads is checked out to ./spreads:

virtualenv spreadsenv
cd spreadsenv
source ./bin/activate
The following dependencies are not pulled in automatically by
setuptools
pip install cffi
pip install jpegtran-cffi
pip install -e ../spreads

Other prerequisite packages you may require include:

libffi-dev libjpeg8-dev libturbojpeg

Adding support for new devices

To support new devices, you have to subclass DevicePlugin in your module and add it as an entry point for
the spreadsplug.devices namespace to your package’s setup.py. In it,
you override and implement the features supported by your device. Take a look
at the plugin for CHDK-based cameras [https://github.com/DIYBookScanner/spreads/blob/master/spreadsplug/dev/chdkcamera.py] and the relevant part of spreads’
setup.py [https://github.com/DIYBookScanner/spreads/blob/master/setup.py] for a reference implementation.

Devices have to implement a
yield_devices<spreads.plugin.DevicePlugin.yield_devices> method that scans
the system for supported devices and returns fully instantiated device objects
for those.

Declaring available configuration options for plugins

Device drivers (as well as all plugins) can implement the
configuration_templates<spreads.plugin.SpreadsPlugin.configuration_template>
method that returns a dictionary of setting keys and
PluginOption<spreads.plugin.PluginOption> objects. These options will be
visible across all supported interfaces and also be read from the configuration
file and command-line arguments.

Extending spreads built-in commands

You can extend all of spread’s built-in commands with your own code. To do,
you just have to inherit from the HookPlugin class and one of the available mixin classes (at
the moment these are CaptureHooksMixin<spreads.plugin.CaptureHooksMixin>,
TriggerHooksMixin<spreads.plugin.TriggerHooksMixin>,
ProcessHookMixin<spreads.plugin.ProcessHookMixin>,
OutputHookMixin<spreads.plugin.OutputHookMixin>). You then have to implement
each of the required methods for the mixins of your choice.

Furthermore, you have to add an entry point for that class in the
spreadsplug.hooks namespace in your package’s setup.py file. For a
list of available hooks and their options, refer to the API documentation. Example implementations can be found on GitHub [https://github.com/DIYBookScanner/spreads/blob/master/spreadsplug]

See also

module spreads.plugin, module spreads.util

Adding new commands

You can also add entirely new commands to the application. Simply subclass
HookPlugin and
SubcommandHookMixin<spreads.plugin.SubcommandHookMixin>, implement the
add_command_parser classmethod and add your new class as an entry point to
the spreadsplug.hooks namespace. See the web [https://github.com/DIYBookScanner/spreads/blob/master/spreadsplug/web/__init__.py] and gui [https://github.com/DIYBookScanner/spreds/blob/master/spreadsplug/gui/__init__.py] plugins for examples
of plugins that add custom subcommands.

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	
 next |

 	
 previous |

 	spreads 0.5git20150526.c802 documentation

API Reference

	spreads API Reference

	spreadsplug

	HTTP API

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	
 next |

 	
 previous |

 	spreads 0.5git20150526.c802 documentation

 	API Reference

spreads API Reference

spreads package

This is the core package for spreads. Except for the spreads.cli and
spreads.main modules (which contain the logic for the spread
command-line application) everything in this package is UI-agnostic and
designed to be used from plugins in the spreadsplug namespace.

It includes the following modules (in no particular order):

	spreads.main

	Core logic for application startup and parsing of command-line arguments

	spreads.cli

	Implementation of the command-line interface, i.e. the configure,
capture, postprocess, output and wizard subcommands.

	spreads.config

	Classes for working with configuration, both per-workflow and
application-wide. Most important for plugin developers is the
spreads.config.OptionTemplate class, which allows for the
UI-agnostic declaration of configuration options.

	spreads.workflow

	This is by far the largest module in the core and contains the
spreads.workflow.Workflow class that is the central entity
in the application. Also included are classes for representing single
page entities and TOC-entries, as well as various signals that can be
emitted by a workflow entity.

	spreads.metadata

	Contains the spreads.metadata.Metadata entity class that
manages the reading and writing of metadata values.

	spreads.plugin

	The most important module for plugin authors. It contains the various
interfaces (all inheriting from spreads.plugin.SpreadsPlugin)
that plugins and device drivers can implement, as well as functions
(intended for use by the core) to enumerate and initialize plugins and
device drivers.

	spreads.util

	Various helper functions that can be useful for both plugin authors and
the core. Also contains the various Exception subclasses
used throughout the core and the plugin interface.

	spreads.tkconfigure

	Implementation of the graphical configuration dialog (accessible via the
guiconfigure subcommand), using the Tkinter bindings from Python’s
standard library.

Public plugin API (realized through a range of abstract classes) and utility
functions for enumerating and loading plugins.

	
exception spreads.plugin.ExtensionException(message=None, extension=None)[source]

	” Raised when something went wrong during plugin enumeration/ or
instantiation.

	
__init__(message=None, extension=None)[source]

	

	
class spreads.plugin.SpreadsPlugin(config)[source]

	Plugin base class.

	
on_progressed = <blinker.base.NamedSignal object at 0x7f9520c47890; u'plugin:progressed'>

	

	
classmethod configuration_template()[source]

	Allows a plugin to define its configuration keys.

The returned dictionary has to be flat (i.e. no nested dicts)
and contain a OptionTemplate object for each key.

Example:

{
 'a_setting': OptionTemplate(value='default_value'),
 'another_setting': OptionTemplate(value=[1, 2, 3],
 docstring="A list of things"),
 # In this case, 'full-fat' would be the default value
 'milk': OptionTemplate(value=('full-fat', 'skim'),
 docstring="Type of milk",
 selectable=True),
}

	Returns:	dict with unicode ->
spreads.config.OptionTemplate

	
__init__(config)[source]

	Initialize the plugin.

	Parameters:	config (confit.ConfigView) – The global configuration object. If the plugin has a
__name__ attribute, only the section with
plugin-specific values gets stored in the config
attribute

	
class spreads.plugin.DeviceFeatures[source]

	Enum that provides various constants that DeviceDriver
implementations can expose in their DeviceDriver.features tuple
to declare support for one or more given features.

	
PREVIEW = <DeviceFeatures.PREVIEW: 1>

	Device can grab a preview picture

	
IS_CAMERA = <DeviceFeatures.IS_CAMERA: 2>

	Device class allows the operation of two devices simultaneously
(mainly to be used by cameras, where each device is responsible for
capturing a single page.

	
CAN_DISPLAY_TEXT = <DeviceFeatures.CAN_DISPLAY_TEXT: 3>

	Device can display arbitrary messages on its screen

	
CAN_ADJUST_FOCUS = <DeviceFeatures.CAN_ADJUST_FOCUS: 4>

	Device can read set its own focus distance and read out its autofocus

	
class spreads.plugin.DeviceDriver(config, device)[source]

	Base class for device drivers.

Subclass to implement support for different devices.

	
features = ()

	Tuple of DeviceFeatures constants that designate the
features the device offers.

	
classmethod configuration_template()[source]

	Returns some pre-defined options when the implementing devices
has the DeviceFeatures.IS_CAMERA feature.

	
__init__(config, device)[source]

	Set connection information and other properties.

	Parameters:	
	config (spreads.confit.ConfigView) – spreads configuration

	device (py:class:usb.core.Device) – USB device to use for the object

	
connected()[source]

	Check if the device is still connected.

	Return type:	bool [http://docs.python.org/2.7/library/functions.html#bool]

	
set_target_page(target_page)[source]

	Set the device target page, if applicable.

	Parameters:	target_page (unicode, one of odd or even) – The target page

	
prepare_capture()[source]

	Prepare device for scanning.

What this means exactly is up to the implementation and the type
of device, usually it involves things like switching into record
mode and applying all relevant settings.

	
capture(path)[source]

	Capture a single image with the device.

	Parameters:	path (pathlib.Path [http://pathlib.readthedocs.org/en/pep428/index.html#pathlib.Path]) – Path for the image

	
finish_capture()[source]

	Tell device to finish capturing.

What this means exactly is up to the implementation and the type of
device, with a camera it could e.g. involve retracting the lense.

	
update_configuration(updated)[source]

	Update the device configuration.

The implementing device driver should propagate these updates to the
hardware and make sure everything is applied correctly.

	Parameters:	updated (dict [http://docs.python.org/2.7/library/stdtypes.html#dict]) – Updated configuration values

	
on_progressed = <blinker.base.NamedSignal object at 0x7f9520c47890; u'plugin:progressed'>

	

	
class spreads.plugin.HookPlugin(config)[source]

	Base class for HookPlugins.

Implement one of the available mixin classes
(SubcommandHooksMixin, CaptureHooksMixin,
py:class:TriggerHooksMixin, ProcessHooksMixin,
OutputHooksMixin) to register for the appropriate hooks.

	
__init__(config)

	Initialize the plugin.

	Parameters:	config (confit.ConfigView) – The global configuration object. If the plugin has a
__name__ attribute, only the section with
plugin-specific values gets stored in the config
attribute

	
configuration_template()

	Allows a plugin to define its configuration keys.

The returned dictionary has to be flat (i.e. no nested dicts)
and contain a OptionTemplate object for each key.

Example:

{
 'a_setting': OptionTemplate(value='default_value'),
 'another_setting': OptionTemplate(value=[1, 2, 3],
 docstring="A list of things"),
 # In this case, 'full-fat' would be the default value
 'milk': OptionTemplate(value=('full-fat', 'skim'),
 docstring="Type of milk",
 selectable=True),
}

	Returns:	dict with unicode ->
spreads.config.OptionTemplate

	
on_progressed = <blinker.base.NamedSignal object at 0x7f9520c47890; u'plugin:progressed'>

	

	
class spreads.plugin.SubcommandHooksMixin[source]

	Mixin for plugins that want to provide custom subcommands.

	
__init__

	x.__init__(...) initializes x; see help(type(x)) for signature

	
class spreads.plugin.CaptureHooksMixin[source]

	Mixin for plugins that want to hook into the capture process.

	
prepare_capture(devices)[source]

	Perform some action before capturing begins.

	Parameters:	devices (list of DeviceDriver) – The devices used for capturing

	
capture(devices, path)[source]

	Perform some action after each successful capture.

	Parameters:	
	devices (list of DeviceDriver) – The devices used for capturing

	path (pathlib.Path [http://pathlib.readthedocs.org/en/pep428/index.html#pathlib.Path]) – Workflow path

	
finish_capture(devices, path)[source]

	Perform some action after capturing has finished.

	Parameters:	
	devices (list of DeviceDriver) – The devices used for capturing

	path (pathlib.Path [http://pathlib.readthedocs.org/en/pep428/index.html#pathlib.Path]) – Workflow path

	
__init__

	x.__init__(...) initializes x; see help(type(x)) for signature

	
class spreads.plugin.TriggerHooksMixin[source]

	Mixin for plugins that want to provice customized ways of triggering
a capture.

	
start_trigger_loop(capture_callback)[source]

	
	Start a thread that runs an event loop and periodically triggers

	a capture by calling the capture_callback.

	Parameters:	capture_callback (function) – The function that triggers a capture

	
stop_trigger_loop()[source]

	Stop the thread started by start_trigger_loop().

	
__init__

	x.__init__(...) initializes x; see help(type(x)) for signature

	
class spreads.plugin.ProcessHooksMixin[source]

	Mixin for plugins that want to provide postprocessing functionality.

	
process(pages, target_path)[source]

	
	Perform one or more actions that either modify the captured images

	or generate a different output.

	Parameters:	
	pages (list of spreads.workflow.Page) – Pages to be processed

	target_path (pathlib.Path [http://pathlib.readthedocs.org/en/pep428/index.html#pathlib.Path]) – Target directory for processed files

	
__init__

	x.__init__(...) initializes x; see help(type(x)) for signature

	
class spreads.plugin.OutputHooksMixin[source]

	Mixin for plugins that want to create output files.

	
output(pages, target_path, metadata, table_of_contents)[source]

	Assemble an output file from the pages.

	Parameters:	
	pages (list of spreads.workflow.Page) – Project path

	target_path (pathlib.Path [http://pathlib.readthedocs.org/en/pep428/index.html#pathlib.Path]) – Target directory for processed files

	metadata (spreads.metadata.Metadata) – Metadata for workflow

	table_of_contents (list of spreads.workflow.TocEntry) – Table of Contents for workflow

	
__init__

	x.__init__(...) initializes x; see help(type(x)) for signature

	
spreads.plugin.available_plugins()[source]

	Get the names of all installed plugins.

	Returns:	List of plugin names

	
spreads.plugin.get_plugins(*names)[source]

	Get instantiated and configured plugin instances.

	Parameters:	names (unicode [http://docs.python.org/2.7/library/functions.html#unicode]) – One or more plugin names

	Returns:	Mapping of plugin name to plugin instance

	Return type:	dict of unicode -> SpreadsPlugin

	
spreads.plugin.available_drivers()[source]

	Get the names of all installed device drivers.

	Returns:	List of driver names

	
spreads.plugin.get_driver(driver_name)[source]

	Get a device driver.

	Parameters:	driver_name (unicode [http://docs.python.org/2.7/library/functions.html#unicode]) – Name of driver to instantiate

	Returns:	The driver class

	Return type:	DeviceDriver class

	
spreads.plugin.get_devices(config, force_reload=False)[source]

	Get initialized and configured device instances.

	Parameters:	
	config (spreads.config.Configuration) – Global configuration

	force_reload (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Don’t load devices from cache

	Returns:	Device instances

	Return type:	list of DeviceDriver objects

Central Workflow entity (and its signals) and various associated
entities.

	
exception spreads.workflow.ValidationError(message=None, **kwargs)[source]

	Raised when some kind of validation error occured.

	Attr message:	General error message

	Attr errors:	Mapping from field name to validation error message

	
__init__(message=None, **kwargs)[source]

	Create new instance.

**kwargs should be a mapping from a field name to an error
message.

	
class spreads.workflow.Page(raw_image, sequence_num=None, capture_num=None, page_label=None, processed_images=None)[source]

	Entity that holds information about a single page.

	Attr raw_image:	The path to the raw image.

	Attr processed_images:

		A dictionary of plugin names mapped to the path of
a processed file.

	Attr capture_num:

		The capture number of the page, i.e. at what
position in the workflow it was recorded, including
aborted and retaken shots.

	Attr sequence_num:

		The sequence number of the page, i.e. at what
position in the list of ‘good’ captures it is.
Usually identical with the position in the
containing pages list. Defaults to the capture
number.

	Attr page_label:

		A label for the page. Must be an integer, a string
of digits or a roman numeral (e.g. 12, ‘12’,
‘XII’). Defaults to the sequence number.

	
__init__(raw_image, sequence_num=None, capture_num=None, page_label=None, processed_images=None)[source]

	

	
get_latest_processed(image_only=True)[source]

	Get the least recent postprocessed file

	Parameters:	image_only (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Only return image files (e.g. no OCR files)

	Returns:	Path to least recent postprocessed file

	Return type:	pathlib.Path [http://pathlib.readthedocs.org/en/pep428/index.html#pathlib.Path]

	
to_dict()[source]

	Serialize entity to a dict.

Used by spreads.util.CustomJSONEncoder.

	
class spreads.workflow.TocEntry(title, start_page, end_page, children=None)[source]

	Represent a ‘table of contents’ entry.

	Attr title:	Label/title of the entry

	Attr start_page:

		First page of the entry

	Attr end_page:	First page no longer part of the entry

	:attr children; Other TocEntry objects that designate a

	sub-range of this entry

	
__init__(title, start_page, end_page, children=None)[source]

	

	
to_dict()[source]

	Serialize entity to a dict.

Used by spreads.util.CustomJSONEncoder.

	
class spreads.workflow.Workflow(path, config=None, metadata=None)[source]

	Core entity for managing scanning workflows.

	Attr id:	UUID for the workflow

	Attr status:	Current status. Keys are step (‘capture’, ‘process’
or ‘output’), step_progress (Progress as a value
between 0 and 1) and prepared (whether capture is
already prepared).

	Attr path:	Path to directory containing the
workflow’s data.

:type path; pathlib.Path [http://pathlib.readthedocs.org/en/pep428/index.html#pathlib.Path]
:attr bag: Underlying BagIt data structure
:type bag: py:class:spreads.vendor.bagit.Bag
:attr slug: ASCIIfied version of workflow title without spaces.
:attr config: Configuration for the worklfow, takes precedence

over the global configuration).

	Attr metadata:	Metadata, contains at least a title field.

	Attr pages:	Pages available in the workflow

	Attr table_of_contents:

		Table of contents entries in the workflow

	Attr last_modified:

		Time of last modification

	Attr devices:	Active devices

	Attr out_files:	Generated output files

	
classmethod create(location, metadata=None, config=None)[source]

	Create a new Workflow.

	Parameters:	
	location (unicode or pathlib.Path [http://pathlib.readthedocs.org/en/pep428/index.html#pathlib.Path]) – Base directory that the workflow should be created
in

	metadata (dict [http://docs.python.org/2.7/library/stdtypes.html#dict]) – Initial metadata for workflow. Must at least
contain a title item.

	config (dict or spreads.config.Configuration) – Initial configuration for workflow

	Returns:	The new instance

	Return type:	Workflow

	
classmethod find_all(location, key=u'slug', reload=False)[source]

	List all workflows in the given location.

	Parameters:	
	location (unicode or pathlib.Path [http://pathlib.readthedocs.org/en/pep428/index.html#pathlib.Path]) – Location where the workflows are located

	key (str/unicode) – Attribute to use as key for returned dict

	reload (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Do not load workflows from cache

	Returns:	All found workflows

	Return type:	dict [http://docs.python.org/2.7/library/stdtypes.html#dict]

	
classmethod find_by_id(location, id)[source]

	Try to locate a workflow with the given id in a directory.

	Parameters:	
	location (unicode or pathlib.Path [http://pathlib.readthedocs.org/en/pep428/index.html#pathlib.Path]) – Base directory that contains workflows to be
searched among

	id – ID of workflow to be searched for

	Return type:	Workflow or None

	
classmethod find_by_slug(location, slug)[source]

	Try to locate a workflow that matches a given slug in a directory.

	Parameters:	
	location (unicode or pathlib.Path [http://pathlib.readthedocs.org/en/pep428/index.html#pathlib.Path]) – Base directory that contains workflows to be
searched among

	slug (unicode [http://docs.python.org/2.7/library/functions.html#unicode]) – Slug of workflow to be searched for

	Return type:	Workflow or None

	
classmethod remove(workflow)[source]

	Delete a workflow from the disk and cache.

	Parameters:	workflow (Workflow) – Workflow to be deleted

	
__init__(path, config=None, metadata=None)[source]

	

	
remove_pages(*pages)[source]

	Remove one or more pages from the workflow.

This will irrevocably remove the page metadata as well as all of its
associated files, so use responsibly!

	Parameters:	pages (Page) – One or more pages to remove

	
crop_page(page, left, top, width=None, height=None, async=False)[source]

	Crop a page’s raw image.

	Parameters:	
	page – Page the raw image of which should be cropped

	left – X coordinate of crop boundary

	top – Y coordinate of crop boundary

	width – Width of crop box

	height – Height of crop box

	async – Perform the cropping in a background thread

	Returns:	The Future object when async was True

	Return type:	concurrent.futures.Future

	
save()[source]

	Persist all changes to the corresponding files on disk.

	
prepare_capture()[source]

	Prepare capture on devices and initialize trigger plugins.

	
finish_capture()[source]

	Wrap up capture process.

	
process()[source]

	Run all captured pages through post-processing.

	
output()[source]

	Assemble pages into output files.

	
update_configuration(values)[source]

	Update the workflow’s configuration.

Metadata class and utility functions.

get_isbn_suggestions() and get_isbn_metadata() return a
dictionary with the following keys (which corresponds to the Dublin Core
field of the same name): creator, identifier, date, language.

	
spreads.metadata.get_isbn_suggestions(query)[source]

	For a given query, return a list of metadata suggestions.

	Parameters:	query (unicode [http://docs.python.org/2.7/library/functions.html#unicode]) – Search query

	Returns:	List of suggestions

	Return type:	list of dict

	
spreads.metadata.get_isbn_metadata(isbn)[source]

	
	For a given valid ISBN number (-10 or -13) return the corresponding

	metadata.

	Parameters:	isbn (unicode [http://docs.python.org/2.7/library/functions.html#unicode]) – A valid ISBN-10 or ISBN-13

	Returns:	Metadata for ISBN

	Return type:	dict or None if ISBN is not valid or does not exist

	
class spreads.metadata.SchemaField(key, description=None, multivalued=False)[source]

	Definition of a field in a metadata schema.

	Attr key:	Key/field name

	Attr description:

		Description of the field

	Attr multivalued:

		Whether the field can hold multiple values

	
__init__(key, description=None, multivalued=False)[source]

	

	
class spreads.metadata.Metadata(base_path)[source]

	dict-like object that has a schema of metadata fields (currently
hard-wired to Dublin Core) and persists all operations to a dcmeta.txt
text file on the disk.

	
__init__(base_path)[source]

	
	Create a new instance and try to load current values from an

	existing file.

	Parameters:	base_path – Directory where dcmeta.txt should be stored

Configuration entities.

	
class spreads.config.OptionTemplate(value, docstring=None, selectable=False, advanced=False, depends=None)[source]

	Definition of a configuration option.

	Attr value:	The default value for the option or a list of available
options if :py:attr`selectable` is True

	Attr docstring:	A string explaining the configuration option

	Attr selectable:

		Make the OptionTemplate a selectable, i.e. value
contains a list or tuple of acceptable values for this
option, with the first member being the default
selection.

	Attr advanced:	Whether the option is an advanced option

	Attr depends:	Make option dependant of some other setting (if passed a
dict) or another plugin (if passed a string)

	
__init__(value, docstring=None, selectable=False, advanced=False, depends=None)[source]

	

	
class spreads.config.Configuration(appname=u'spreads')[source]

	Entity managing configuration state.

Uses confit.Configuration underneath the hood and follows
its ‘overlay’-principle.
Proxies __getitem__() and __setitem__() from it, so
it can be used as a dict-like type.

	
__init__(appname=u'spreads')[source]

	Create new instance and load default and current configuration.

	Parameters:	appname – Application name, configuration will be loaded from
this name’s default configuration directory

	
keys()[source]

	See confit.ConfigView.keys()

	
dump(filename=None, full=True, sections=None)[source]

	See confit.Configuration.dump()

	
flatten()[source]

	See confit.Configuration.flatten()

	
load_templates()[source]

	Get all available configuration templates from the activated
plugins.

	Returns:	Mapping from plugin name to template mappings.

	Return type:	dict unicode -> (dict unicode ->
OptionTemplate)

	
cfg_path

	Path to YAML file of the user-specific configuration.

	Returns:	Path

	Return type:	pathlib.Path [http://pathlib.readthedocs.org/en/pep428/index.html#pathlib.Path]

	
with_overlay(overlay)[source]

	Get a new configuration that overlays the provided configuration
over the present configuration.

	Parameters:	overlay (confit.ConfigSource or dict) – The configuration to be overlaid

	Returns:	A new, merged configuration

	Return type:	confit.Configuration

	
as_view()[source]

	Return the Configuration as a confit.ConfigView
instance.

	
load_defaults(overwrite=True)[source]

	Load default settings from option templates.

	Parameters:	overwrite – Whether to overwrite already existing values

	
set_from_template(section, template, overwrite=True)[source]

	Set default options from templates.

	Parameters:	
	section (unicode [http://docs.python.org/2.7/library/functions.html#unicode]) – Target section for settings

	overwrite – Whether to overwrite already existing values

	
set_from_args(args)[source]

	Apply settings from parsed command-line arguments.

	Parameters:	args (argparse.Namespace [http://docs.python.org/2.7/library/argparse.html#argparse.Namespace]) – Parsed command-line arguments

Various utility functions and classes.

	
exception spreads.util.SpreadsException[source]

	General exception

	
exception spreads.util.DeviceException[source]

	Raised when a device-related error occured.

	
exception spreads.util.MissingDependencyException[source]

	Raised when a dependency for a plugin is missing.

	
spreads.util.get_version()[source]

	Get installed version via pkg_resources.

	
spreads.util.find_in_path(name)[source]

	Find executable in $PATH.

	Parameters:	name (unicode [http://docs.python.org/2.7/library/functions.html#unicode]) – name of the executable

	Returns:	Path to executable or None if not found

	Return type:	unicode or None

	
spreads.util.is_os(osname)[source]

	Check if the current operating system matches the expected.

	Parameters:	osname – Operating system name as returned by
platform.system() [http://docs.python.org/2.7/library/platform.html#platform.system]

	Returns:	Whether the OS matches or not

	Return type:	bool [http://docs.python.org/2.7/library/functions.html#bool]

	
spreads.util.check_futures_exceptions(futures)[source]

	
	” Go through passed concurrent.futures._base.Future objects

	and re-raise the first Exception raised by any one of them.

	Parameters:	futures (iterable with concurrent.futures._base.Future
instances) – Iterable that contains the futures to be checked

	
spreads.util.get_free_space(path)[source]

	Return free space on file-system underlying the passed path.

	Parameters:	path – Path on file-system the free space of which is desired.

:type path; unicode
:return: Free space in bytes.
:rtype: int

	
spreads.util.get_subprocess(cmdline, **kwargs)[source]

	Get a subprocess.Popen [http://docs.python.org/2.7/library/subprocess.html#subprocess.Popen] instance.

On Windows systems, the process will be ran in the background and won’t
open a cmd-window or appear in the taskbar.
The function signature matches that of the subprocess.Popen [http://docs.python.org/2.7/library/subprocess.html#subprocess.Popen]
initialization method.

	
spreads.util.wildcardify(pathnames)[source]

	
	Try to generate a single path with wildcards that matches all

	pathnames.

	Parameters:	pathnames – List of pathnames to find a wildcard string for

	Returns:	The wildcard string or None if none was found

	Return type:	unicode or None

	
spreads.util.diff_dicts(old, new)[source]

	Get the difference between two dictionaries.

	Parameters:	
	old (dict [http://docs.python.org/2.7/library/stdtypes.html#dict]) – Dictionary to base comparison on

	new (dict [http://docs.python.org/2.7/library/stdtypes.html#dict]) – Dictionary to compare with

	Returns:	A (possibly nested) dictionary containing all items from new
that differ from the ones in old

	Return type:	dict [http://docs.python.org/2.7/library/stdtypes.html#dict]

	
spreads.util.slugify(text, delimiter=u'-')[source]

	Generates an ASCII-only slug.

Code adapted from Flask snipped by Armin Ronacher:
http://flask.pocoo.org/snippets/5/

	Parameters:	
	text (unicode [http://docs.python.org/2.7/library/functions.html#unicode]) – Text to create slug for

	delimiter (unicode [http://docs.python.org/2.7/library/functions.html#unicode]) – Delimiter to use in slug

	Returns:	The generated slug

	Return type:	unicode [http://docs.python.org/2.7/library/functions.html#unicode]

	
class spreads.util.abstractclassmethod(func)[source]

	
	New decorator class that implements the @abstractclassmethod decorator

	added in Python 3.3 for Python 2.7.

Kudos to http://stackoverflow.com/a/13640018/487903

	
__init__(func)[source]

	

	
class spreads.util.ColourStreamHandler(stream=None)[source]

	A colorized output StreamHandler

Kudos to Leigh MacDonald: http://goo.gl/Lpr6C5

	
is_tty

	Check if we are using a “real” TTY. If we are not using a TTY it
means that the colour output should be disabled.

	Returns:	Using a TTY status

	Return type:	bool [http://docs.python.org/2.7/library/functions.html#bool]

	
class spreads.util.EventHandler(level=0)[source]

	Subclass of logging.Handler that emits a
blinker.base.Signal whenever a new record is emitted.

	
on_log_emit = <blinker.base.NamedSignal object at 0x7f95227c4210; u'logrecord'>

	

	
spreads.util.get_data_dir(create=False)[source]

	Return (and optionally create) the user’s default data directory.

	Parameters:	create (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Create the data directory if it doesn’t exist

	Returns:	Path to the default data directory

	Return type:	unicode [http://docs.python.org/2.7/library/functions.html#unicode]

	
spreads.util.colorize(text, color)[source]

	Return text with a new ANSI foreground color.

	Parameters:	
	text – Text to be wrapped

	color (str (from colorama.ansi <http://git.io/9qnt0Q>)) – ANSI color to wrap text in

	Returns:	Colorized text

	
class spreads.util.RomanNumeral(value, case=u'upper')[source]

	Number type that represents integers as Roman numerals and that
can be used in all arithmetic operations applicable to integers.

	
static is_roman(value)[source]

	Check if value is a valid Roman numeral.

	Parameters:	value (unicode [http://docs.python.org/2.7/library/functions.html#unicode]) – Value to be checked

	Returns:	Whether the value is valid or not

	Return type:	bool [http://docs.python.org/2.7/library/functions.html#bool]

	
__init__(value, case=u'upper')[source]

	Create a new instance.

	Parameters:	value (int, unicode containing valid Roman numeral or
RomanNumeral) – Value of the instance

	
class spreads.util.CustomJSONEncoder(skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, encoding='utf-8', default=None)[source]

	Custom json.JSONEncoder [http://docs.python.org/2.7/library/json.html#json.JSONEncoder].

Uses an object’s to_dict method if present for serialization.

Serializes pathlib.Path [http://pathlib.readthedocs.org/en/pep428/index.html#pathlib.Path] instances to the string
representation of their relative path to a BagIt-compliant directory or
their absolute path if not applicable.

Core logic for application startup and parsing of command-line arguments

	
spreads.main.add_argument_from_template(extname, key, template, parser, current_val)[source]

	Add option from template to parser under the name key.

Templates with a boolean value type will create a –<key> or
–no-<key> flag, depending on their current value.

	Parameters:	
	extname – Name of the configuration section this option’s result
should be stored in

	key – Configuration key in section, will also determine the
name of the argument.

	template (spreads.config.OptionTemplate) – Template for the argument

	parser (argparse.ArgumentParser [http://docs.python.org/2.7/library/argparse.html#argparse.ArgumentParser]) – Argument parser the argument should be added to

	current_val – Current value of the option

	
spreads.main.main()[source]

	Entry point for spread command-line application.

	
spreads.main.run()[source]

	Setup the application and run subcommand

	
spreads.main.run_config_windows()[source]

	Entry point to launch graphical configuration dialog on Windows.

	
spreads.main.run_service_windows()[source]

	Entry point to launch web plugin server on Windows.

	
spreads.main.setup_logging(config)[source]

	Conigure application-wide logger.

	Parameters:	config (spreads.config.Configuration) – Global configuration

	
spreads.main.setup_parser(config)[source]

	Sets up an argparse.ArgumentParser [http://docs.python.org/2.7/library/argparse.html#argparse.ArgumentParser] instance with all
options and subcommands that are available in the core and activated
plugins.

	Parameters:	config (spreads.config.Configuration) – Current application configuration

	Returns:	Fully initialized argument parser

	Return type:	argparse.ArgumentParser [http://docs.python.org/2.7/library/argparse.html#argparse.ArgumentParser]

	
spreads.main.should_show_argument(template, active_plugins)[source]

	Checks the spreads.config.OptionTemplate.depends attribute
for dependencies on other plugins and validates them against the list of
activated plugins.

We do not validate dependencies on other configuration settings because
we don’t have access to the final state of the configuration at this time,
since the configuration can potentially be changed by other command-line
flags.

	Parameters:	
	template (spreads.config.OptionTemplate) – Template to check

	active_plugins – List of names of activated plugins

	Returns:	Whether or not the argument should be displayed

Command-Line interface for configuration, capture, output and postprocessing.

	
spreads.cli.getch()[source]

	Waits for a single character to be entered on stdin and returns it.

	Returns:	Character that was entered

	Return type:	str [http://docs.python.org/2.7/library/functions.html#str]

	
spreads.cli.draw_progress(progress)[source]

	Draw a progress bar to stdout.

	Parameters:	progress (float [http://pillow.readthedocs.org/reference/ImageMath.html#float]) – Progress value between 0 and 1

	
spreads.cli.configure(config)[source]

	Configuration subcommand that runs through the various dialogs, builds
a new configuration and writes it to disk.

	Parameters:	config (spreads.config.Configuration) – Currently active global configuration

	
spreads.cli.capture(config)[source]

	Dialog to run through the capture process.

	Parameters:	config (spreads.config.Configuration) – Currently active global configuration

	
spreads.cli.postprocess(config)[source]

	Launch postprocessing plugins and display their progress

	Parameters:	config (spreads.config.Configuration) – Currently active global configuration

	
spreads.cli.output(config)[source]

	Launch output plugins and display their progress

	Parameters:	config (spreads.config.Configuration) – Currently active global configuration

	
spreads.cli.wizard(config)[source]

	Launch every step in succession with the same configuration.

	Parameters:	config (spreads.config.Configuration) – Currently active global configuration

Graphical configuration dialog.

	
class spreads.tkconfigure.TkConfigurationWindow(spreads_config, master=None)[source]

	Window that holds the dialog

	
__init__(spreads_config, master=None)[source]

	Initialize Window with global configuration.

	Parameters:	spreads_config (spreads.config.Configuration) – Global configuration

	
update_plugin_config(plugins)[source]

	
	Update list of activated plugins and load its default

	configuration.

	Parameters:	plugins (list of unicode) – List of names of plugins to activate

	
on_update_driver(event)[source]

	Callback for when the user selects a driver.

Updates the driver in the configuration and toggles the status of
widgets that depend on certain device features.

	Parameters:	event (Tkinter.Event) – Event from Tkinter

	
on_update_plugin_selection(event)[source]

	Callback for when the user toggles a plugin.

Tries to load the newly selected plugins. If loading fails, a dialog
with the cause of failure will be displayed and the plugin will be
highlighted in the list and made inactive. If successful, the plugin
will be added to the ‘postprocessing order’ widget (if it implements
spreads.plugin.ProcessHooksMixin) and the configuration
will be updated.

	Parameters:	event (Tkinter.Event) – Event from Tkinter

	
on_process_plugin_move(event)[source]

	
	Callback for when the user changes the position of a plugin in

	the postprocessing order widget.

Updates the widget and writes the new order to the configuration.

	Parameters:	event (Tkinter.Event) – Event from Tkinter

	
create_driver_widgets()[source]

	Create widgets for driver-related actions.

	
create_plugin_widgets()[source]

	Create widgets for plugin-related actions.

	
load_values()[source]

	Set widget state from configuration.

	
set_orientation(target)[source]

	Set target page on a device.

Prompts the user to connect a device, prompts to retry or cancel
on failure. If successful, updates the target page setting on the
device.

	Parameters:	target (unicode, one of “odd” or “even”) – Target page to set on device

	
configure_focus()[source]

	
	Acquire auto-focus value from devices and update the configuration

	with it.

Prompts the user to connect a device, asks for cancel/retry on failure.
On successful connection, acquires focus and writes the value to the
configuration.

	
save_config()[source]

	Write configuration to disk.

	
spreads.tkconfigure.configure(config)[source]

	Initialize and display configuration dialog.

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	
 next |

 	
 previous |

 	spreads 0.5git20150526.c802 documentation

 	API Reference

spreadsplug

spreadsplug package

This package contains all of the plugins and device drivers that are shipped
with the application and supported by the spreads developers themselves.

In alphabetical order:

	spreadsplug.autorotate

	Postprocessing plugin to rotate captured images according to their EXIF
orientation tag.

	spreadsplug.dev.chdkcamera

	Driver for Canon cameras with the CHDK firmware.

	spreadsplug.dev.gphoto2

	Driver for cameras supported by libgphoto2

	spreadsplug.dev.dummy

	Dummy driver that implements the driver interface and just spits out one
of the two test images. Intended for rapid development, not for general
usage.

	spreadsplug.djvubind

	Output plugin to compress and bundle images (and OCRed text) into a single
DJVU file using the djvubind utility.

	spreadsplug.gui

	Subcommand plugin for a graphical wizard using Qt (via the PySide bindings)

	spreadsplug.hidtrigger

	Trigger plugin to initiate a capture from USB HID devices (like foot-pedals
or gamepads)

	spreadsplug.intervaltrigger

	Trigger plugin to initiate a capture in a configurable interval.

	spreadsplug.pdfbeads

	Output plugin to compress and bundle images (and OCRed text) into a single
PDF file using the pdfbeads utility.

	spreadsplug.scantailor

	Postprocesing plugin to put captured images through the ScanTailor
application.

	spreadsplug.tesseract

	Postprocessing plugin to perform optical character recognition on the
images, using the tesseract application

	spreadsplug.web

	Subcommand plugin for a RESTful HTTP API (implemented with Flask and
Tornado) and a single-page JavaScript web application (implemented with
ReactJS)

Trigger plugin that triggers in a configurable interval.

Plugin to provide a RESTful HTTP API and a single-page web application for
controlling the software.

The code for the plug in is split across the following server-side modules:

	spreadsplug.web.app

	Contains the subcommand hook as well as the initialization code for the
web application.

	spreadsplug.web.endpoints

	WSGI endpoints that provide most parts of the RESTful interface,
implemented with Flask.

	spreadsplug.web.handlers

	Tornado HTTP handlers for long-polling and chunked downloading endpoints,
as well as a WebSocket handler for sending out server-side events to all
clients.

	spreadsplug.web.tasks

	Implementations of long-running tasks that are performed in the background,
across multiple request-response-cycles, through the Huey task queue.

	spreadsplug.web.discovery

	Code for both advertising of postprocessing-servers via UDP multi-casting,
as well as the auto-discovery of said servers from other instances.

	spreadsplug.web.util

	Various utility classes and functions for the plugin.

	spreadsplug.web.winservice

	Code for a simple Windows service that runs the application in the
background and provides a small taskbar-icon to allow opening a browser
and shutting down the appplication.

For the documentation of the client-side part, please refer to the following
document: TODO

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	
 next |

 	
 previous |

 	spreads 0.5git20150526.c802 documentation

 	API Reference

HTTP API

The web plugin also exposes all of its functions through a REST-ish API.
You can use it to write small scripts or even for a full-blown Android
or iPhone application, if you feel so inclined.

	
GET /api/remote/templates

	Get option templates for all available plugins from a remote server.

Behaves exactly like GET /api/templates.

	Query Parameters:

		
	server – Hostname of remote server

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	
GET /api/remote/discover

	Get list of available postprocessing servers on network.

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Request JSON Object:

		
	servers (array) – List of available server addresses

	
POST /api/system/shutdown

	Shut down device.

Requires that the user running the application has permission to run
shutdown -h now via sudo.
Note that this endpoint will never send a response, clients should take
this into account and set a low timeout value.

	
GET /api/remote/plugins

	Get available plugin names from a remote server, grouped by type.

Behaves exactly like GET /api/plugins.

	Query Parameters:

		
	server – Hostname of remote server

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	
GET /api/remote/config

	Get default configuration from a remote server.

Behaves exactly like GET /api/config.

	Query Parameters:

		
	server – Hostname of remote server

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	
POST /api/system/reboot

	Reboot device.

Requires that the user running the application has permission to run
shutdown -r now via sudo.
Note that this endpoint will never send a response, clients should take
this into account and set a low timeout value.

	
GET /api/templates

	For every activated plugin, get all option templates.

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	
POST /api/workflow

	Create a new workflow.

	Request Headers:

		
	Accept [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1] – application/json

	Request JSON Object:

		
	config (object) – Configuration for new workflow

	metadata (object) – Metadata for new workflow

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – When everything was OK.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – When validation of configuration or metadata
failed.

	
GET /api/workflow

	Return a list of all workflows.

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	
GET /api/plugins

	Get names of available and activated postprocessing and output plugins.

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Response JSON Object:

		
	postprocessing (array) – List of postprocessing plugin names

	output (array) – List of output plugin names

	
GET /api/config

	Get global default configuration.

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	
PUT /api/config

	Update global default configuration.

If core or web settings were modified, the application will be
restarted.

	Request Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	
POST /api/reset

	Restart the application.

Note that this endpoint will never send a response, clients should take
this into account and set a low timeout value.

	
GET /api/isbn

	Search for ISBN records.

	Query Parameters:

		
	q – Search query

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Response JSON Object:

		
	results (array) – Matching ISBN records

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – When the query was successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – When no search query was supplied

	
GET /api/log

	Get application log.

	Query Parameters:

		
	start – Index of first message (default: 0)

	count – Number of messages to return (default: 50)

	level – Maximum log level to be included in messages
(default: INFO)

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Response JSON Object:

		
	total_num (boolean) – Total number of messages

	messages (array) – Requested messages

	
GET /api/workflow/(workflow: workflow)/page/(int: number)/(img_type)/(plugname)/thumb

	Get thumbnail for a page image.

	
GET /api/workflow/(workflow: workflow)/page/(int: number)/(img_type)/thumb

	Get thumbnail for a page image.

	
POST /api/workflow/(workflow: workflow)/page/(int: number)/(img_type)/crop

	Crop a page image in place.

	
GET /api/workflow/(workflow: workflow)/page/(int: number)/(img_type)/(plugname)

	Get image for requested page.

	Parameters:	
	workflow (str) – UUID or slug for a workflow

	number (int) – Capture number of requested page

	img_type (str, one of raw or processed) – Type of image

	plugname (str) – Only applicable if img_type is processed,
selects the desired processed file by its key in the
spreads.workflow.Workflow.processed_images
dictionary.

	Query Parameters:

		
	width – Optionally scale down image to the desired width

	format – Optionally convert image to desired format.
If browser is specified, non-JPG or PNG images will
be converted to PNG.

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – Depends on value of format, by default
the mime-type of the original image.

	
GET /api/workflow/(workflow: workflow)/page/(int: number)/(img_type)

	Get image for requested page.

	Parameters:	
	workflow (str) – UUID or slug for a workflow

	number (int) – Capture number of requested page

	img_type (str, one of raw or processed) – Type of image

	plugname (str) – Only applicable if img_type is processed,
selects the desired processed file by its key in the
spreads.workflow.Workflow.processed_images
dictionary.

	Query Parameters:

		
	width – Optionally scale down image to the desired width

	format – Optionally convert image to desired format.
If browser is specified, non-JPG or PNG images will
be converted to PNG.

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – Depends on value of format, by default
the mime-type of the original image.

	
GET /api/workflow/(workflow: workflow)/output/(fname)

	Download an output file.

	Parameters:	
	workflow (str) – UUID or slug for the workflow to download from

	fname (str) – Filename of the output file to download

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Everything OK.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Workflow or filename not found

	
GET /api/workflow/(workflow: workflow)/page/(int: number)

	Get a single page.

	Parameters:	
	workflow (str) – UUID or slug for a workflow

	number (int) – Capture number of requested page

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	
DELETE /api/workflow/(workflow: workflow)/page/(int: number)

	Remove a single page from a workflow.

	
POST /api/workflow/(workflow: workflow)/prepare_capture

	Prepare capture for the requested workflow.

	
POST /api/workflow/(workflow: workflow)/finish_capture

	Wrap up capture process on the requested workflow.

	
GET /api/workflow/(workflow: workflow)/download

	
	Redirect to download endpoint (see

	spreadsplug.web.handlers.ZipDownloadHandler or
spreadsplug.web.handlers.TarDownloadHandler) with proper
filename set.

	Parameters:	
	workflow (str) – UUID or slug for the workflow to download

	Query Parameters:

		
	fmt – Archive format for download (zip or tar,
default: tar)

	Status Codes:	
	302 Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.3] – Redirects to :http:get:`/api/workflow/\
(str:workflow_id)/download/\
(str:workflow_slug).(str:archive_extension)`

	
POST /api/workflow/(workflow: workflow)/transfer

	Enqueue workflow for transfer to an attached USB storage device.

Requires that the python-dbus package is installed.

Once the transfer was succesfully enqueued, watch for the
spreadsplug.web.tasks.on_transfer_started which is emitted
when the transfer actually started and subsequently
spreadsplug.web.tasks.on_transfer_progressed and
spreadsplug.web.tasks.on_transfer_completed.

	Parameters:	
	workflow (str) – UUID or slug for the workflow to be transferred

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – When the transfer was successfully enqueued.

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – When the python-dbus package was not found.

	503 Service Unavailable [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4] – When no removable USB device could be found for
mounting.

	
POST /api/workflow/(workflow: workflow)/capture

	Trigger a capture on the requested workflow.

Optional parameter ‘retake’ specifies if the last shot is to be retaken.

Returns the number of pages shot and a list of the pages captured by
this call in JSON notation.

	
POST /api/workflow/(workflow: workflow)/process

	Enqueue the specified workflow for postprocessing.

	
POST /api/workflow/(workflow: workflow)/submit

	Enqueue workflow for submission to a postprocessing server.

It is possible to submit a configuration object that should be used
on the remote end for the workflow.
Optionally, it can be specified if postprocessing and output generation
should immediately be enqueued on the remote server.

Once the submission was succesfully enqueued, watch for the
spreadsplug.web.tasks.on_submit_started which is emitted
when the submission actually started and subsequently
spreadsplug.web.tasks.on_submit_progressed,
spreadsplug.web.tasks.on_submit_completed and
spreadsplug.web.tasks.on_submit_error.

	Request Headers:

		
	Accept [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1] – application/json

	Parameters:	
	workflow (str) – UUID or slug for the workflow to be submitted

	Request JSON Object:

		
	server (string) – Address of server to submit to

	config (object) – Configuration to use for workflow on remote
server.

	start_process (boolean) – Whether to enqueue workflow for
post-processing on the remote server.

	start_output (boolean) – Whether to enqueue workflow for output
generation on the remote server.

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – When the transfer was successfully enqueued.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – When no postprocessing server was specified

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – When the python-dbus package was not found.

	503 Service Unavailable [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4] – When no removable USB device could be found for
mounting.

	
POST /api/workflow/(workflow: workflow)/output

	Enqueue the specified workflow for output generation.

	
GET /api/workflow/(workflow: workflow)/page

	Get all pages for a workflow.

	Parameters:	
	workflow (str) – UUID or slug for a workflow

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	
DELETE /api/workflow/(workflow: workflow)/page

	Delete multiple pages from a workflow with one request.

	
GET /api/workflow/(workflow: workflow)

	Return a single workflow.

	Parameters:	
	workflow (str) – UUID or slug for a workflow

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	
PUT /api/workflow/(workflow: workflow)

	Update a single workflow.

	Parameters:	
	workflow (str) – UUID or slug for the workflow to be updated

	Request JSON Object:

		
	config (object) – Updated workflow configuration

	metadata (object) – Updated workflow metadata

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – When everything was OK.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – When validation of configuration or metadata
failed.

	
DELETE /api/workflow/(workflow: workflow)

	Delete a single workflow from database and disk.

	Parameters:	
	workflow (str) – UUID or slug for the workflow to be updated

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – When deletion was succesful

	
GET /api/isbn/(isbn)

	Get metadata for a given ISBN number.

	Parameters:	
	isbn (str/unicode with valid ISBN-10 or ISBN-13, optionally
prefixed with isbn:) – ISBN number to retrieve metadata for

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – When the ISBN was valid and a match was found.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – When the ISBN was invalid or no match was found.

	
GET /static/(path: filename)

	Function used internally to send static files from the static
folder to the browser.

New in version 0.5.

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	
 previous |

 	spreads 0.5git20150526.c802 documentation

Changelog

0.5 (2014/03/??)

	A web interface that currently supports creating workflows, capturing images
and downloading them as a ZIP file.

	New plugins to trigger capture across all interfaces: ‘hidtrigger’ for USB
HID devices, ‘intervaltrigger’ to trigger a capture in regular intervals

	Use new, optimized JPEG processing library

	Plugin API now useses mixin classes to declare which hooks are implemented

	Made ‘chdkcamera’ driver more resilient

0.4.2 (2014/01/05)

	Fix packaging issues

	Small bugfix for older Tesseract versions

0.4.1 (2013/12/25)

	Fix ‘spread’ tool

	Include missing vendor package in distribution

0.4 (2013/12/25)

	Use chdkptp utility for controlling cameras with CHDK firmware

	Fix instability when shooting with CHDK cameras

	Shoot images in RAW/DNG file format (experimental)

	Remove download step, images will be directly streamed to the project
directory

	Remove combine plugin, images will be combined in capture step

	Device driver and plugins, as well as their order of execution can be set
interactively via the configure subcommand, which has to be run before
the first usage.

	Lots of internal API changes

0.3.3 (2013/08/28)

	Fix typo in device manager that prevent drivers from being loaded

0.3.2 (2013/08/24)

	Fixes a critical bug in the devices drivers

0.3.1 (2013/08/23)

	Fixes a bug that prevented spreads to be installed

0.3 (2013/08/23)

	Plugins can add completely new subcommands.

	GUI plugin that provides a graphical workflow wizard.

	Tesseract plugin that can perform OCR on captured images.

	pdfbeads plugin can include recognized text in a hidden layer if OCR has
been performed beforehand.

	Use EXIF tags to persist orientation information instead of JPEG comments.

	Better logging with colorized output

	Simplified multithreading/multiprocessing code

	CHDK driver is a lot more stable now

0.2 (2013/06/30)

	New plugin system based on Doug Hellmann’s stevedore package,
allows packages to extend spreads without being included in the core
distribution

	The driver for CHDK cameras no longer relies on gphoto2 and ptpcam,
but relies on Abel Deuring’s pyptpchdk package to communicate with
the cameras.

	Wand is now used to deal with image data instead of Pillow

	New ‘colorcorrection’ plugin allows users to automatically correct
white balance.

	Improved tutorial

0.1 (2013/06/23)

	Initial release

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	spreads 0.5git20150526.c802 documentation

 Spreads HTTP API

 /api/config |
 /api/isbn |
 /api/log |
 /api/plugins |
 /api/remote |
 /api/reset |
 /api/system |
 /api/templates |
 /api/workflow |
 /static

 			

 		
 /api/config	

 	
 	
 GET /api/config	

 	
 	
 PUT /api/config	

 			

 		
 /api/isbn	

 	
 	
 GET /api/isbn	

 	
 	
 GET /api/isbn/(isbn)	

 			

 		
 /api/log	

 	
 	
 GET /api/log	

 			

 		
 /api/plugins	

 	
 	
 GET /api/plugins	

 			

 		
 /api/remote	

 	
 	
 GET /api/remote/config	

 	
 	
 GET /api/remote/discover	

 	
 	
 GET /api/remote/plugins	

 	
 	
 GET /api/remote/templates	

 			

 		
 /api/reset	

 	
 	
 POST /api/reset	

 			

 		
 /api/system	

 	
 	
 POST /api/system/reboot	

 	
 	
 POST /api/system/shutdown	

 			

 		
 /api/templates	

 	
 	
 GET /api/templates	

 			

 		
 /api/workflow	

 	
 	
 GET /api/workflow	

 	
 	
 GET /api/workflow/(workflow:workflow)	

 	
 	
 GET /api/workflow/(workflow:workflow)/download	

 	
 	
 GET /api/workflow/(workflow:workflow)/output/(fname)	

 	
 	
 GET /api/workflow/(workflow:workflow)/page	

 	
 	
 GET /api/workflow/(workflow:workflow)/page/(int:number)	

 	
 	
 GET /api/workflow/(workflow:workflow)/page/(int:number)/(img_type)	

 	
 	
 GET /api/workflow/(workflow:workflow)/page/(int:number)/(img_type)/(plugname)	

 	
 	
 GET /api/workflow/(workflow:workflow)/page/(int:number)/(img_type)/(plugname)/thumb	

 	
 	
 GET /api/workflow/(workflow:workflow)/page/(int:number)/(img_type)/thumb	

 	
 	
 POST /api/workflow	

 	
 	
 POST /api/workflow/(workflow:workflow)/capture	

 	
 	
 POST /api/workflow/(workflow:workflow)/finish_capture	

 	
 	
 POST /api/workflow/(workflow:workflow)/output	

 	
 	
 POST /api/workflow/(workflow:workflow)/page/(int:number)/(img_type)/crop	

 	
 	
 POST /api/workflow/(workflow:workflow)/prepare_capture	

 	
 	
 POST /api/workflow/(workflow:workflow)/process	

 	
 	
 POST /api/workflow/(workflow:workflow)/submit	

 	
 	
 POST /api/workflow/(workflow:workflow)/transfer	

 	
 	
 PUT /api/workflow/(workflow:workflow)	

 	
 	
 DELETE /api/workflow/(workflow:workflow)	

 	
 	
 DELETE /api/workflow/(workflow:workflow)/page	

 	
 	
 DELETE /api/workflow/(workflow:workflow)/page/(int:number)	

 			

 		
 /static	

 	
 	
 GET /static/(path:filename)	

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	spreads 0.5git20150526.c802 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 spreads	

 	
 	
 spreads.cli	

 	
 	
 spreads.config	

 	
 	
 spreads.main	

 	
 	
 spreads.metadata	

 	
 	
 spreads.plugin	

 	
 	
 spreads.tkconfigure	

 	
 	
 spreads.util	

 	
 	
 spreads.workflow	

 	[image: -]
 	
 spreadsplug	

 	
 	
 spreadsplug.intervaltrigger	

 	
 	
 spreadsplug.web	

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 api |

 	
 modules |

 	spreads 0.5git20150526.c802 documentation

Index

 Symbols
 | _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	

 	
 --aperture <float>

 	

 	gphoto2-driver command line option

 	
 --autopilot

 	

 	command line option

 	
 --chdkptp-path <path>

 	

 	chdkcamera-driver command line option

 	
 --debug

 	

 	command line option, [1]

 	
 --detection <content/page> [default: content]

 	

 	command line option

 	
 --dpi <int>

 	

 	chdkcamera-driver command line option

 	
 --flip-target-pages

 	

 	spread-capture command line option

 	
 --focus-distance <int/auto>

 	

 	chdkcamera-driver command line option

 	
 --iso <string>

 	

 	gphoto2-driver command line option

 	
 --language LANGUAGE

 	

 	command line option

 	
 --mode <full/scanner/processor>

 	

 	command line option

 	
 --mode [scanner, processor, full (default)]

 	

 	command line option

 	
 --no-auto-margins

 	

 	command line option

 	
 --no-content

 	

 	command line option

 	

 	
 --no-deskew

 	

 	command line option

 	
 --no-parallel-capture

 	

 	spread-capture command line option

 	
 --no-split-pages

 	

 	command line option

 	
 --port <int>

 	

 	command line option

 	
 --port <port> (default: 5000)

 	

 	command line option

 	
 --postprocessing-server <address>

 	

 	command line option

 	
 --project-dir <path>

 	

 	command line option, [1]

 	
 --rotate

 	

 	command line option

 	
 --sensitivity <int>

 	

 	chdkcamera-driver command line option

 	
 --shoot-raw

 	

 	chdkcamera-driver command line option

 	gphoto2-driver command line option

 	
 --shutter-speed <fraction>

 	

 	chdkcamera-driver command line option

 	gphoto2-driver command line option

 	
 --standalone-device

 	

 	command line option, [1]

 	
 --zoom-level <int>

 	

 	chdkcamera-driver command line option

_

 	

 	__init__ (spreads.plugin.CaptureHooksMixin attribute)

 	

 	(spreads.plugin.OutputHooksMixin attribute)

 	(spreads.plugin.ProcessHooksMixin attribute)

 	(spreads.plugin.SubcommandHooksMixin attribute)

 	(spreads.plugin.TriggerHooksMixin attribute)

 	

 	__init__() (spreads.config.Configuration method)

 	

 	(spreads.config.OptionTemplate method)

 	(spreads.metadata.Metadata method)

 	(spreads.metadata.SchemaField method)

 	(spreads.plugin.DeviceDriver method)

 	(spreads.plugin.ExtensionException method)

 	(spreads.plugin.HookPlugin method)

 	(spreads.plugin.SpreadsPlugin method)

 	(spreads.tkconfigure.TkConfigurationWindow method)

 	(spreads.util.RomanNumeral method)

 	(spreads.util.abstractclassmethod method)

 	(spreads.workflow.Page method)

 	(spreads.workflow.TocEntry method)

 	(spreads.workflow.ValidationError method)

 	(spreads.workflow.Workflow method)

A

 	

 	abstractclassmethod (class in spreads.util)

 	add_argument_from_template() (in module spreads.main)

 	as_view() (spreads.config.Configuration method)

 	

 	available_drivers() (in module spreads.plugin)

 	available_plugins() (in module spreads.plugin)

C

 	

 	CAN_ADJUST_FOCUS (spreads.plugin.DeviceFeatures attribute)

 	CAN_DISPLAY_TEXT (spreads.plugin.DeviceFeatures attribute)

 	capture() (in module spreads.cli)

 	

 	(spreads.plugin.CaptureHooksMixin method)

 	(spreads.plugin.DeviceDriver method)

 	CaptureHooksMixin (class in spreads.plugin)

 	cfg_path (spreads.config.Configuration attribute)

 	
 chdkcamera-driver command line option

 	

 	--chdkptp-path <path>

 	--dpi <int>

 	--focus-distance <int/auto>

 	--sensitivity <int>

 	--shoot-raw

 	--shutter-speed <fraction>

 	--zoom-level <int>

 	check_futures_exceptions() (in module spreads.util)

 	colorize() (in module spreads.util)

 	ColourStreamHandler (class in spreads.util)

 	
 command line option

 	

 	--autopilot

 	--debug, [1]

 	--detection <content/page> [default: content]

 	--language LANGUAGE

 	--mode <full/scanner/processor>

 	--mode [scanner, processor, full (default)]

 	--no-auto-margins

 	--no-content

 	--no-deskew

 	--no-split-pages

 	--port <int>

 	--port <port> (default: 5000)

 	--postprocessing-server <address>

 	--project-dir <path>, [1]

 	--rotate

 	--standalone-device, [1]

 	

 	Configuration (class in spreads.config)

 	configuration_template() (spreads.plugin.DeviceDriver class method)

 	

 	(spreads.plugin.HookPlugin method)

 	(spreads.plugin.SpreadsPlugin class method)

 	configure() (in module spreads.cli)

 	

 	(in module spreads.tkconfigure)

 	configure_focus() (spreads.tkconfigure.TkConfigurationWindow method)

 	connected() (spreads.plugin.DeviceDriver method)

 	create() (spreads.workflow.Workflow class method)

 	create_driver_widgets() (spreads.tkconfigure.TkConfigurationWindow method)

 	create_plugin_widgets() (spreads.tkconfigure.TkConfigurationWindow method)

 	crop_page() (spreads.workflow.Workflow method)

 	CustomJSONEncoder (class in spreads.util)

D

 	

 	DeviceDriver (class in spreads.plugin)

 	DeviceException

 	DeviceFeatures (class in spreads.plugin)

 	

 	diff_dicts() (in module spreads.util)

 	draw_progress() (in module spreads.cli)

 	dump() (spreads.config.Configuration method)

E

 	

 	EventHandler (class in spreads.util)

 	

 	ExtensionException

F

 	

 	features (spreads.plugin.DeviceDriver attribute)

 	find_all() (spreads.workflow.Workflow class method)

 	find_by_id() (spreads.workflow.Workflow class method)

 	find_by_slug() (spreads.workflow.Workflow class method)

 	

 	find_in_path() (in module spreads.util)

 	finish_capture() (spreads.plugin.CaptureHooksMixin method)

 	

 	(spreads.plugin.DeviceDriver method)

 	(spreads.workflow.Workflow method)

 	flatten() (spreads.config.Configuration method)

G

 	

 	get_data_dir() (in module spreads.util)

 	get_devices() (in module spreads.plugin)

 	get_driver() (in module spreads.plugin)

 	get_free_space() (in module spreads.util)

 	get_isbn_metadata() (in module spreads.metadata)

 	get_isbn_suggestions() (in module spreads.metadata)

 	

 	get_latest_processed() (spreads.workflow.Page method)

 	get_plugins() (in module spreads.plugin)

 	get_subprocess() (in module spreads.util)

 	get_version() (in module spreads.util)

 	getch() (in module spreads.cli)

 	
 gphoto2-driver command line option

 	

 	--aperture <float>

 	--iso <string>

 	--shoot-raw

 	--shutter-speed <fraction>

H

 	

 	HookPlugin (class in spreads.plugin)

I

 	

 	IS_CAMERA (spreads.plugin.DeviceFeatures attribute)

 	is_os() (in module spreads.util)

 	

 	is_roman() (spreads.util.RomanNumeral static method)

 	is_tty (spreads.util.ColourStreamHandler attribute)

K

 	

 	keys() (spreads.config.Configuration method)

L

 	

 	load_defaults() (spreads.config.Configuration method)

 	load_templates() (spreads.config.Configuration method)

 	

 	load_values() (spreads.tkconfigure.TkConfigurationWindow method)

M

 	

 	main() (in module spreads.main)

 	Metadata (class in spreads.metadata)

 	

 	MissingDependencyException

O

 	

 	on_log_emit (spreads.util.EventHandler attribute)

 	on_process_plugin_move() (spreads.tkconfigure.TkConfigurationWindow method)

 	on_progressed (spreads.plugin.DeviceDriver attribute)

 	

 	(spreads.plugin.HookPlugin attribute)

 	(spreads.plugin.SpreadsPlugin attribute)

 	on_update_driver() (spreads.tkconfigure.TkConfigurationWindow method)

 	

 	on_update_plugin_selection() (spreads.tkconfigure.TkConfigurationWindow method)

 	OptionTemplate (class in spreads.config)

 	output() (in module spreads.cli)

 	

 	(spreads.plugin.OutputHooksMixin method)

 	(spreads.workflow.Workflow method)

 	OutputHooksMixin (class in spreads.plugin)

P

 	

 	Page (class in spreads.workflow)

 	postprocess() (in module spreads.cli)

 	prepare_capture() (spreads.plugin.CaptureHooksMixin method)

 	

 	(spreads.plugin.DeviceDriver method)

 	(spreads.workflow.Workflow method)

 	

 	PREVIEW (spreads.plugin.DeviceFeatures attribute)

 	process() (spreads.plugin.ProcessHooksMixin method)

 	

 	(spreads.workflow.Workflow method)

 	ProcessHooksMixin (class in spreads.plugin)

R

 	

 	remove() (spreads.workflow.Workflow class method)

 	remove_pages() (spreads.workflow.Workflow method)

 	RomanNumeral (class in spreads.util)

 	

 	run() (in module spreads.main)

 	run_config_windows() (in module spreads.main)

 	run_service_windows() (in module spreads.main)

S

 	

 	save() (spreads.workflow.Workflow method)

 	save_config() (spreads.tkconfigure.TkConfigurationWindow method)

 	SchemaField (class in spreads.metadata)

 	set_from_args() (spreads.config.Configuration method)

 	set_from_template() (spreads.config.Configuration method)

 	set_orientation() (spreads.tkconfigure.TkConfigurationWindow method)

 	set_target_page() (spreads.plugin.DeviceDriver method)

 	setup_logging() (in module spreads.main)

 	setup_parser() (in module spreads.main)

 	should_show_argument() (in module spreads.main)

 	slugify() (in module spreads.util)

 	
 spread-capture command line option

 	

 	--flip-target-pages

 	--no-parallel-capture

 	spreads (module)

 	spreads.cli (module)

 	spreads.config (module)

 	

 	spreads.main (module)

 	spreads.metadata (module)

 	spreads.plugin (module)

 	spreads.tkconfigure (module)

 	spreads.util (module)

 	spreads.workflow (module)

 	SpreadsException

 	spreadsplug (module)

 	spreadsplug.intervaltrigger (module)

 	spreadsplug.web (module)

 	SpreadsPlugin (class in spreads.plugin)

 	start_trigger_loop() (spreads.plugin.TriggerHooksMixin method)

 	stop_trigger_loop() (spreads.plugin.TriggerHooksMixin method)

 	SubcommandHooksMixin (class in spreads.plugin)

T

 	

 	TkConfigurationWindow (class in spreads.tkconfigure)

 	to_dict() (spreads.workflow.Page method)

 	

 	(spreads.workflow.TocEntry method)

 	

 	TocEntry (class in spreads.workflow)

 	TriggerHooksMixin (class in spreads.plugin)

U

 	

 	update_configuration() (spreads.plugin.DeviceDriver method)

 	

 	(spreads.workflow.Workflow method)

 	

 	update_plugin_config() (spreads.tkconfigure.TkConfigurationWindow method)

V

 	

 	ValidationError

W

 	

 	wildcardify() (in module spreads.util)

 	with_overlay() (spreads.config.Configuration method)

 	

 	wizard() (in module spreads.cli)

 	Workflow (class in spreads.workflow)

 Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

 _modules/spreads/metadata.html

 Navigation

 		
 index

 		
 api |

 		
 modules |

 		spreads 0.5git20150526.c802 documentation »

 		Module code »

 Source code for spreads.metadata

-*- coding: utf-8 -*-

Copyright (C) 2014 Johannes Baiter <johannes.baiter@gmail.com>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
Metadata class and utility functions.

:py:func:`get_isbn_suggestions` and :py:func:`get_isbn_metadata` return a
dictionary with the following keys (which corresponds to the Dublin Core
field of the same name): `creator`, `identifier`, `date`, `language`.
"""

from __future__ import division, unicode_literals

from collections import MutableMapping

import isbnlib
from isbnlib import _goom as googlebooks
from spreads.vendor.bagit import BagInfo

def _format_isbnlib(isbnrecord):
 meta = {}
 for k, v in isbnrecord.items():
 # Ignore empty fields
 if not v:
 continue
 if k == 'Authors':
 meta['creator'] = v
 elif k == 'ISBN-13':
 meta['identifier'] = ["ISBN:{0}".format(v)]
 elif k == 'Year':
 meta['date'] = v
 elif k == 'Publisher':
 meta['publisher'] = [v]
 elif k == 'Language':
 meta['language'] = [v]
 else:
 meta[k.lower()] = v
 return meta

[docs]def get_isbn_suggestions(query):
 """ For a given `query`, return a list of metadata suggestions.

 :param query: Search query
 :type query: unicode
 :returns: List of suggestions
 :rtype: list of dict
 """
 if isinstance(query, unicode):
 query = query.encode('utf-8')
 results = googlebooks.query(query)
 out_list = []
 for data in results:
 out_list.append(_format_isbnlib(data))
 return out_list

[docs]def get_isbn_metadata(isbn):
 """ For a given valid ISBN number (-10 or -13) return the corresponding
 metadata.

 :param isbn: A valid ISBN-10 or ISBN-13
 :type isbn: unicode
 :returns: Metadata for ISBN
 :rtype: dict or `None` if ISBN is not valid or does not exist
 """
 try:
 rv = isbnlib.meta(isbn)
 if rv:
 return _format_isbnlib(rv)
 except isbnlib.NotValidISBNError:
 return None

[docs]class SchemaField(object):
 """ Definition of a field in a metadata schema.

 :attr key: Key/field name
 :type key: unicode
 :attr description: Description of the field
 :type description: unicode
 :attr multivalued: Whether the field can hold multiple values
 :type multivalued: bool
 """
[docs] def __init__(self, key, description=None, multivalued=False):
 self.key = key
 self.multivalued = multivalued
 if not description:
 description = key.capitalize() + ("(s)" if multivalued else "")
 self.description = description

 def to_dict(self):
 return {
 'key': self.key,
 'description': self.description,
 'multivalued': self.multivalued,
 }

 def __repr__(self):
 return ("SchemaField(key={0}, description={1}, multivalued={2})"
 .format(self.key, self.description, self.multivalued))

[docs]class Metadata(MutableMapping):
 """ dict-like object that has a schema of metadata fields (currently
 hard-wired to Dublin Core) and persists all operations to a `dcmeta.txt`
 text file on the disk.
 """
 # TODO: This should really be exposed over the plugin API so that plugins
 # can specify custom schemas that would render across all UIs,
 # similar to `OptionTemplate` for the configuration.
 FILENAME = 'dcmeta.txt'
 SCHEMA = [
 SchemaField('title'),
 SchemaField('creator', multivalued=True),
 SchemaField('date'),
 SchemaField('publisher', multivalued=True),
 SchemaField('language', multivalued=True),
 SchemaField('extent', description="Extent/Number of pages"),
 SchemaField('identifier', multivalued=True),
]

 @classmethod
 def _schemafield_for_key(cls, key):
 try:
 return next(f for f in cls.SCHEMA if f.key == key)
 except StopIteration:
 raise KeyError("Could not find field '{0}' in schema".format(key))

[docs] def __init__(self, base_path):
 """ Create a new instance and try to load current values from an
 existing file.

 :param base_path: Directory where `dcmeta.txt` should be stored
 :type path: :py:class:`pathlib.Path`
 """
 self.filepath = base_path/self.FILENAME
 self._backingstore = BagInfo(unicode(self.filepath))

 def __getitem__(self, key):
 val = self._backingstore[key]
 schemafield = self._schemafield_for_key(key)
 if schemafield.multivalued and not type(val) in (tuple, list):
 val = [val]
 return val

 def __setitem__(self, key, value):
 self._schemafield_for_key(key)
 self._backingstore[key] = value

 def __delitem__(self, key):
 del self._backingstore[key]

 def __iter__(self):
 return iter(self._backingstore)

 def __len__(self):
 return len(self._backingstore)

 © Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

_images/wizard4.png
Postproces:

Starting postprocessing...
Rotating images in /tmp/demolraw
Generating ScanTailor configuration

_modules/spreads/plugin.html

 Navigation

 		
 index

 		
 api |

 		
 modules |

 		spreads 0.5git20150526.c802 documentation »

 		Module code »

 Source code for spreads.plugin

-*- coding: utf-8 -*-

Copyright (C) 2014 Johannes Baiter <johannes.baiter@gmail.com>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
Public plugin API (realized through a range of abstract classes) and utility
functions for enumerating and loading plugins.
"""

from __future__ import division, unicode_literals

import abc
import logging
from collections import OrderedDict

import pkg_resources
from blinker import Namespace
from enum import Enum

from spreads.config import OptionTemplate
from spreads.util import (abstractclassmethod, DeviceException,
 MissingDependencyException)

logger = logging.getLogger("spreads.plugin")

Global cache of devices and extensions
devices = None
extensions = dict()

[docs]class ExtensionException(Exception):
 """" Raised when something went wrong during plugin enumeration/ or
 instantiation.
 """
[docs] def __init__(self, message=None, extension=None):
 super(ExtensionException, self).__init__(message)
 self.extension = extension

[docs]class SpreadsPlugin(object): # pragma: no cover
 """ Plugin base class. """
 signals = Namespace()
 on_progressed = signals.signal('plugin:progressed', doc="""\
 Sent by a :py:class:`SpreadsPlugin` when it has progressed in a
 long-running operation.

 :argument :py:class:`SpreadsPlugin`: the SpreadsPlugin that progressed
 :keyword float progress: the progress as a value between 0
 and 1
 """)

 @classmethod
[docs] def configuration_template(cls):
 """ Allows a plugin to define its configuration keys.

 The returned dictionary has to be flat (i.e. no nested dicts)
 and contain a OptionTemplate object for each key.

 Example::

 {
 'a_setting': OptionTemplate(value='default_value'),
 'another_setting': OptionTemplate(value=[1, 2, 3],
 docstring="A list of things"),
 # In this case, 'full-fat' would be the default value
 'milk': OptionTemplate(value=('full-fat', 'skim'),
 docstring="Type of milk",
 selectable=True),
 }

 :returns: dict with `unicode` ->
 :py:class:`spreads.config.OptionTemplate`
 """
 pass

[docs] def __init__(self, config):
 """ Initialize the plugin.

 :param config: The global configuration object. If the plugin has a
 `__name__` attribute, only the section with
 plugin-specific values gets stored in the `config`
 attribute
 :type config: :py:class:`confit.ConfigView`
 """
 if hasattr(self, '__name__'):
 self.config = config[self.__name__]
 else:
 self.config = config

[docs]class DeviceFeatures(Enum): # pragma: no cover
 """ Enum that provides various constants that :py:class:`DeviceDriver`
 implementations can expose in their :py:attr:`DeviceDriver.features` tuple
 to declare support for one or more given features.
 """
 #: Device can grab a preview picture
 PREVIEW = 1

 #: Device class allows the operation of two devices simultaneously
 #: (mainly to be used by cameras, where each device is responsible for
 #: capturing a single page.
 IS_CAMERA = 2

 #: Device can display arbitrary messages on its screen
 CAN_DISPLAY_TEXT = 3

 #: Device can read set its own focus distance and read out its autofocus
 CAN_ADJUST_FOCUS = 4

[docs]class DeviceDriver(SpreadsPlugin): # pragma: no cover
 """ Base class for device drivers.

 Subclass to implement support for different devices.
 """
 __metaclass__ = abc.ABCMeta

 #: Tuple of :py:class:`DeviceFeatures` constants that designate the
 #: features the device offers.
 features = ()

 @classmethod
[docs] def configuration_template(cls):
 """ Returns some pre-defined options when the implementing devices
 has the :py:attr:`DeviceFeatures.IS_CAMERA` feature.
 """
 templates = {}
 if DeviceFeatures.IS_CAMERA in cls.features:
 templates.update({
 "parallel_capture": OptionTemplate(
 value=True,
 docstring="Trigger capture on multiple devices at once.",
 selectable=False),
 "flip_target_pages": OptionTemplate(
 value=False,
 docstring="Temporarily switch target pages (useful for "
 "e.g. East-Asian books)"),
 "upside_down": OptionTemplate(
 value=False,
 docstring="Cameras are mounted upside-down.")})
 if DeviceFeatures.CAN_ADJUST_FOCUS in cls.features:
 templates.update({
 "focus_mode": OptionTemplate(
 value=["autofocus_all", "autofocus_initial",
 "manual"],
 docstring="Select focus mode", selectable=True),
 "focus_distance": OptionTemplate(
 value=0, docstring="Distance to focus subject",
 depends={'device': {'focus_mode': 'manual'}})})
 return templates

 @abstractclassmethod
 def yield_devices(cls, config): # noqa
 """ Search for usable devices, return a generator that yields them one
 at a time as instances of the implementing class.

 :param config: spreads configuration
 :type config: :py:class:`spreads.confit.ConfigView`
 :returns: Instantiated device objects
 :rtype: Type of implementing class
 """
 raise NotImplementedError

[docs] def __init__(self, config, device):
 """ Set connection information and other properties.

 :param config: spreads configuration
 :type config: :py:class:`spreads.confit.ConfigView`
 :param device: USB device to use for the object
 :type device: py:class:`usb.core.Device`
 """
 self.config = config
 self._device = device

 @abc.abstractmethod
[docs] def connected(self):
 """ Check if the device is still connected.

 :rtype: bool
 """
 raise NotImplementedError

[docs] def set_target_page(self, target_page):
 """ Set the device target page, if applicable.

 :param target_page: The target page
 :type target_page: unicode, one of `odd` or `even`
 """
 raise NotImplementedError

 @abc.abstractmethod
[docs] def prepare_capture(self):
 """ Prepare device for scanning.

 What this means exactly is up to the implementation and the type
 of device, usually it involves things like switching into record
 mode and applying all relevant settings.
 """
 raise NotImplementedError

 @abc.abstractmethod
[docs] def capture(self, path):
 """ Capture a single image with the device.

 :param path: Path for the image
 :type path: :py:class:`pathlib.Path`

 """
 raise NotImplementedError

 @abc.abstractmethod
[docs] def finish_capture(self):
 """ Tell device to finish capturing.

 What this means exactly is up to the implementation and the type of
 device, with a camera it could e.g. involve retracting the lense.
 """
 raise NotImplementedError

 @abc.abstractmethod
[docs] def update_configuration(self, updated):
 """ Update the device configuration.

 The implementing device driver should propagate these updates to the
 hardware and make sure everything is applied correctly.

 :param updated: Updated configuration values
 :type updated: dict
 """
 raise NotImplementedError

[docs]class HookPlugin(SpreadsPlugin):
 """ Base class for HookPlugins.

 Implement one of the available mixin classes
 (:py:class:`SubcommandHooksMixin`, :py:class:`CaptureHooksMixin`,
 py:class:`TriggerHooksMixin`, :py:class:`ProcessHooksMixin`,
 :py:class:`OutputHooksMixin`) to register for the appropriate hooks.
 """
 pass

[docs]class SubcommandHooksMixin(object):
 """ Mixin for plugins that want to provide custom subcommands. """
 __metaclass__ = abc.ABCMeta

 @abstractclassmethod
 def add_command_parser(cls, rootparser, config): # noqa
 """ Allows a plugin to register a new command with the command-line
 parser.

 The subparser that is added to :param rootparser: should set the class'
 ``__call__`` method as the ``func`` (via
 :py:meth:`argparse.ArgumentParser.set_defaults`) that is executed
 when the subcommand is specified on the CLI.

 :param rootparser: The root parser that this plugin should add a
 subparser to.
 :type rootparser: :py:class:`argparse.ArgumentParser`
 :param config: The application configuration
 :type config: :py:class:`spreads.config.Configuration`
 """
 pass

[docs]class CaptureHooksMixin(object):
 """ Mixin for plugins that want to hook into the capture process. """
 __metaclass__ = abc.ABCMeta

 @abc.abstractmethod
[docs] def prepare_capture(self, devices):
 """ Perform some action before capturing begins.

 :param devices: The devices used for capturing
 :type devices: list of :py:class:`DeviceDriver`
 """
 pass

 @abc.abstractmethod
[docs] def capture(self, devices, path):
 """ Perform some action after each successful capture.

 :param devices: The devices used for capturing
 :type devices: list of :py:class:`DeviceDriver`
 :param path: Workflow path
 :type path: :py:class:`pathlib.Path`
 """
 pass

 @abc.abstractmethod
[docs] def finish_capture(self, devices, path):
 """ Perform some action after capturing has finished.

 :param devices: The devices used for capturing
 :type devices: list of :py:class:`DeviceDriver`
 :param path: Workflow path
 :type path: :py:class:`pathlib.Path`
 """
 pass

[docs]class TriggerHooksMixin(object):
 """ Mixin for plugins that want to provice customized ways of triggering
 a capture.
 """
 __metaclass__ = abc.ABCMeta

 @abc.abstractmethod
[docs] def start_trigger_loop(self, capture_callback):
 """ Start a thread that runs an event loop and periodically triggers
 a capture by calling the `capture_callback`.

 :param capture_callback: The function that triggers a capture
 :type capture_callback: function
 """
 pass

 @abc.abstractmethod
[docs] def stop_trigger_loop(self):
 """ Stop the thread started by :py:meth:`start_trigger_loop`. """
 pass

[docs]class ProcessHooksMixin(object):
 """ Mixin for plugins that want to provide postprocessing functionality.
 """
 __metaclass__ = abc.ABCMeta

 @abc.abstractmethod
[docs] def process(self, pages, target_path):
 """ Perform one or more actions that either modify the captured images
 or generate a different output.

 :param pages: Pages to be processed
 :type pages: list of :py:class:`spreads.workflow.Page`
 :param target_path: Target directory for processed files
 :type target_path: :py:class:`pathlib.Path`
 """
 pass

[docs]class OutputHooksMixin(object):
 """ Mixin for plugins that want to create output files. """
 __metaclass__ = abc.ABCMeta

 @abc.abstractmethod
[docs] def output(self, pages, target_path, metadata, table_of_contents):
 """ Assemble an output file from the pages.

 :param pages: Project path
 :type pages: list of :py:class:`spreads.workflow.Page`
 :param target_path: Target directory for processed files
 :type target_path: :py:class:`pathlib.Path`
 :param metadata: Metadata for workflow
 :type metadata: :py:class:`spreads.metadata.Metadata`
 :param table_of_contents: Table of Contents for workflow
 :type table_of_contents: list of :py:class:`spreads.workflow.TocEntry`
 """
 pass

[docs]def available_plugins():
 """ Get the names of all installed plugins.

 :returns: List of plugin names
 """
 return sorted([ext.name for ext in
 pkg_resources.iter_entry_points('spreadsplug.hooks')])

[docs]def get_plugins(*names):
 """ Get instantiated and configured plugin instances.

 :param names: One or more plugin names
 :type names: unicode
 :returns: Mapping of plugin name to plugin instance
 :rtype: dict of unicode -> :py:class:`SpreadsPlugin`
 """
 # Reference to global extension cache
 global extensions
 plugins = OrderedDict()
 for name in names:
 # Already in cache?
 if name in extensions:
 plugins[name] = extensions[name]
 continue
 # Nope, so let's instantiate it...
 try:
 logger.debug("Looking for extension \"{0}\"".format(name))
 ext = next(pkg_resources.iter_entry_points('spreadsplug.hooks',
 name=name))
 except StopIteration:
 raise ExtensionException("Could not locate extension '{0}'"
 .format(name), name)
 try:
 plugin = ext.load()
 plugins[name] = plugin
 # ... and put it into the cache
 extensions[name] = plugin
 except ImportError as err:
 message = err.message
 if message.startswith('No module named'):
 message = message[16:]
 raise ExtensionException(
 "Missing Python dependency for extension '{0}': {1}"
 .format(name, message, name))
 except MissingDependencyException as err:
 raise ExtensionException(
 "Error while locating external application dependency for "
 "extension '{0}':\n{1}".format(err.message, name))
 return plugins

[docs]def available_drivers():
 """ Get the names of all installed device drivers.

 :returns: List of driver names
 """
 return [ext.name
 for ext in pkg_resources.iter_entry_points('spreadsplug.devices')]

[docs]def get_driver(driver_name):
 """ Get a device driver.

 :param driver_name: Name of driver to instantiate
 :type driver_name: unicode
 :returns: The driver class
 :rtype: :py:class:`DeviceDriver` class
 """
 try:
 ext = next(pkg_resources.iter_entry_points('spreadsplug.devices',
 name=driver_name))
 except StopIteration:
 raise ExtensionException("Could not locate driver '{0}'"
 .format(driver_name), driver_name)
 try:
 return ext.load()
 except ImportError as err:
 raise ExtensionException(
 "Missing dependency for driver '{0}': {1}"
 .format(driver_name, err.message[16:]), driver_name)

[docs]def get_devices(config, force_reload=False):
 """ Get initialized and configured device instances.

 :param config: Global configuration
 :type config: :py:class:`spreads.config.Configuration`
 :param force_reload: Don't load devices from cache
 :type force_reload: bool
 :return: Device instances
 :rtype: list of :py:class:`DeviceDriver` objects
 """
 # Reference to global device cache
 global devices
 if not devices or force_reload:
 if 'driver' not in config.keys():
 raise DeviceException(
 "No driver has been configured\n"
 "Please run `spread configure` to select a driver.")
 driver = get_driver(config["driver"].get())
 logger.debug("Finding devices for driver \"{0}\""
 .format(driver.__name__))
 devices = list(driver.yield_devices(config['device']))
 if not devices:
 raise DeviceException(
 "Could not find any compatible devices!\n"
 "Make sure your devices are turned on and properly connected "
 "to the machine.")
 return devices

 © Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

_modules/spreads/tkconfigure.html

 Navigation

 		
 index

 		
 api |

 		
 modules |

 		spreads 0.5git20150526.c802 documentation »

 		Module code »

 Source code for spreads.tkconfigure

-*- coding: utf-8 -*-

Copyright (C) 2014 Johannes Baiter <johannes.baiter@gmail.com>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
Graphical configuration dialog.
"""

from __future__ import division, unicode_literals

import logging
import Tkinter as tk
import tkMessageBox as messagebox
import ttk

import spreads.plugin as plugin

logger = logging.getLogger("guiconfig")

TODO: Implement inter-dependant display of widgets

[docs]class TkConfigurationWindow(tk.Frame):
 """ Window that holds the dialog """
[docs] def __init__(self, spreads_config, master=None):
 """ Initialize Window with global configuration.

 :param spreads_config: Global configuration
 :type spreads_config: :py:class:`spreads.config.Configuration`
 """
 tk.Frame.__init__(self, master)
 self.spreads_config = spreads_config
 self.grid()
 self.create_plugin_widgets()
 self.create_driver_widgets()

 self.save_btn = ttk.Button(self, text="Save", command=self.save_config)
 self.save_btn.grid(column=0, row=7, columnspan=2)

 self.load_values()

[docs] def update_plugin_config(self, plugins):
 """ Update list of activated plugins and load its default
 configuration.

 :param plugins: List of names of plugins to activate
 :type plugins: list of unicode
 """
 config = self.spreads_config
 new_plugins = [x for x in plugins
 if x not in config["plugins"].get()]
 config["plugins"] = plugins
 for name in new_plugins:
 if name not in config.templates:
 logger.debug("No template found for {0}".format(name))
 continue
 self.spreads_config.set_from_template(name, config.templates[name])

[docs] def on_update_driver(self, event):
 """ Callback for when the user selects a driver.

 Updates the driver in the configuration and toggles the status of
 widgets that depend on certain device features.

 :param event: Event from Tkinter
 :type event: :py:class:`Tkinter.Event`
 """
 driver_name = self.driver_select.get()
 driver = plugin.get_driver(driver_name)
 self.spreads_config["driver"] = driver_name
 if plugin.DeviceFeatures.IS_CAMERA in driver.features:
 for widget in (self.orient_label, self.orient_odd_btn,
 self.orient_even_btn, self.focus_label,
 self.focus_btn):
 widget['state'] = "enabled"

[docs] def on_update_plugin_selection(self, event):
 """ Callback for when the user toggles a plugin.

 Tries to load the newly selected plugins. If loading fails, a dialog
 with the cause of failure will be displayed and the plugin will be
 highlighted in the list and made inactive. If successful, the plugin
 will be added to the 'postprocessing order' widget (if it implements
 :py:class:`spreads.plugin.ProcessHooksMixin`) and the configuration
 will be updated.

 :param event: Event from Tkinter
 :type event: :py:class:`Tkinter.Event`
 """
 selection = self.plugin_select.selection()
 self.selected_plugins = list(selection)
 try:
 exts = [name for name, cls in plugin.get_plugins(*selection)
 .iteritems() if issubclass(cls, plugin.ProcessHooksMixin)]
 except plugin.ExtensionException as e:
 exts = []
 failed_ext = e.extension
 messagebox.showerror(message=e.message)
 ext_id = self.plugin_select.index(failed_ext)
 self.plugin_select.delete(failed_ext)
 self.plugin_select.insert('', ext_id, failed_ext, text=failed_ext,
 tags=["missingdep"])

 selection = tuple(x for x in selection if x != failed_ext)
 for item in selection:
 if item in exts:
 if not self.processorder_tree.exists(item):
 self.processorder_tree.insert('', 'end', item, text=item)
 else:
 continue
 for item in self.processorder_tree.get_children():
 if item not in selection:
 self.processorder_tree.delete(item)
 self.update_plugin_config(selection)

[docs] def on_process_plugin_move(self, event):
 """ Callback for when the user changes the position of a plugin in
 the postprocessing order widget.

 Updates the widget and writes the new order to the configuration.

 :param event: Event from Tkinter
 :type event: :py:class:`Tkinter.Event`
 """
 tree = event.widget
 moveto = tree.index(tree.identify_row(event.y))
 tree.move(tree.selection()[0], '', moveto)
 self.update_plugin_config(
 [x for x in self.spreads_config["plugins"].get()
 if x not in tree.get_children()] + list(tree.get_children()))

[docs] def create_driver_widgets(self):
 """ Create widgets for driver-related actions. """
 # Dropdown for driver selection
 self.driver_label = ttk.Label(self, text="Select a driver")
 self.driver_label.grid(column=0, row=2, sticky="E")
 self.driver_select = ttk.Combobox(
 self, values=plugin.available_drivers(), state="readonly")
 self.driver_select.bind("<<ComboboxSelected>>", self.on_update_driver)
 self.driver_select.grid(column=1, row=2, sticky="WE")

 # Buttons for setting of target page
 self.orient_label = ttk.Label(self, text="Set device for target pages",
 state="disabled")
 self.orient_label.grid(column=0, row=3, columnspan=2)
 self.orient_odd_btn = ttk.Button(
 self, text="Odd pages", state="disabled",
 command=lambda: self.set_orientation('odd'))
 self.orient_odd_btn.grid(column=0, row=4)
 self.orient_even_btn = ttk.Button(
 self, text="Even pages", state="disabled",
 command=lambda: self.set_orientation('even'))
 self.orient_even_btn.grid(column=1, row=4)

 # Button to configure device focus
 self.focus_label = ttk.Label(self, text="Configure focus",
 state="disabled")
 self.focus_label.grid(column=0, row=5, columnspan=2)
 self.focus_btn = ttk.Button(self, text="Start", state="disabled",
 command=self.configure_focus)
 self.focus_btn.grid(column=0, row=6, columnspan=2)

[docs] def create_plugin_widgets(self):
 """ Create widgets for plugin-related actions. """
 available_plugins = plugin.available_plugins()

 # List of available boxes with checkboxes
 self.plugin_label = ttk.Label(self, text="Select plugins\n"
 "to be activated")
 self.plugin_label.grid(column=0, row=0, sticky="E")
 self.plugin_select = ttk.Treeview(self, height=len(available_plugins),
 show=["tree"])
 self.plugin_select.tag_configure('missingdep', foreground="red")
 for plug in available_plugins:
 self.plugin_select.insert('', 'end', plug, text=plug)
 self.plugin_select.bind(
 "<<TreeviewSelect>>", self.on_update_plugin_selection
)
 self.plugin_select.grid(column=1, row=0, sticky="WE")

 # Widget to configure postprocessing plugin order
 self.processorder_label = ttk.Label(
 self, text="Select order of\npostprocessing plugins")
 self.processorder_label.grid(column=0, row=1, sticky="E")
 self.processorder_tree = ttk.Treeview(
 self, height=5, show=["tree"],
 selectmode="browse")
 self.processorder_tree.bind("<B1-Motion>", self.on_process_plugin_move,
 add='+')
 self.processorder_tree.grid(column=1, row=1)

[docs] def load_values(self):
 """ Set widget state from configuration. """
 if 'driver' in self.spreads_config.keys():
 self.driver_select.set(self.spreads_config["driver"].get())
 self.on_update_driver(None)
 for plugname in self.spreads_config["plugins"].get():
 self.plugin_select.selection_add(plugname)
 # NOTE: Force update so the order is kept
 self.on_update_plugin_selection(None)

[docs] def set_orientation(self, target):
 """ Set target page on a device.

 Prompts the user to connect a device, prompts to retry or cancel
 on failure. If successful, updates the target page setting on the
 device.

 :param target: Target page to set on device
 :type target: unicode, one of "odd" or "even"
 """
 rv = messagebox.askokcancel(
 message=("Please connect and turn on the camera for {0} pages"
 .format(target)),
 title="Configure target page")
 if not rv:
 return
 devs = []
 while True:
 try:
 devs = plugin.get_devices(self.spreads_config,
 force_reload=True)
 except plugin.DeviceException:
 devs = []
 if not devs:
 errmsg = "No devices could be found."
 elif len(devs) > 1:
 errmsg = "Make sure only one device is turned on!"
 else:
 break
 rv = messagebox.askretrycancel(message=errmsg, title="Error")
 if not rv:
 return

 devs[0].set_target_page(target)
 messagebox.showinfo(message="Please turn off the device.")

[docs] def configure_focus(self):
 """ Acquire auto-focus value from devices and update the configuration
 with it.

 Prompts the user to connect a device, asks for cancel/retry on failure.
 On successful connection, acquires focus and writes the value to the
 configuration.
 """
 # TODO: Handle independent focus for both devices
 rv = messagebox.askokcancel(
 message="Please connect and turn on one of your cameras.",
 title="Configure focus")
 if not rv:
 return
 while True:
 try:
 devs = plugin.get_devices(self.spreads_config,
 force_reload=True)
 focus = devs[0]._acquire_focus()
 self.spreads_config['device']['focus_distance'] = focus
 break
 except plugin.DeviceException:
 rv = messagebox.askretrycancel(
 message="No devices could be found."
)
 if not rv:
 break
 else:
 continue

[docs] def save_config(self):
 """ Write configuration to disk. """
 config = self.spreads_config
 config.dump(filename=config.cfg_path)

[docs]def configure(config):
 """ Initialize and display configuration dialog. """
 app = TkConfigurationWindow(config)
 app.master.title = "Initial configuration"
 app.master.resizable(False, False)
 tk.mainloop()

 © Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

_images/wizard2.png
Capturing from devices

Press a capture key (default: Space, B) to begin capturing.

_images/wizard5.png
Generating output files

Generating output files...
Assembling PDF.
Assembling DJVU.

_images/wizard3.png
Capturing from devices

Shot 12 pages in 0 minutes (1940 pages/hour)

Capture

Retake

Cancel

_images/wizard1.png
Welcome!

‘This wizard will guide you through the digitization workflow.

Please select a project directory.

Tmpidemo Browse

[Scantailor

Content detection mode [content
I~ Rotate pages

¥ Deskew pages

¥ split pages

¥ Detect page content

I~ skip manual correction

¥ Automatically detect margins

search.html

 Navigation

 		
 index

 		
 api |

 		
 modules |

 		spreads 0.5git20150526.c802 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

tutorial.html

 Navigation

 		
 index

 		
 api |

 		
 modules |

 		spreads 0.5git20150526.c802 documentation »

Command-Line Tutorial

This tutorial assumes that you are using a setup with two Canon A2200 cameras
that have the latest version of CHDK installed. The rest of the setup is up to
you, though development and testing has been performed with a build of the
DIYBookScanner [http://diybookscanner.org/forum/viewtopic.php?f=1&t=1192]. Furthermore, the following instructions are tailored to an
up-to-date installation of a Debian GNU/Linux installation or one of its
derivatives (*buntu, Linux Mint, etc.). You might have to adjust the commands for
other distributions. This tutorial will also use most of the included plugins,
so the dependencies are rather numerous, though you can adapt that, if you
want.

The described (and recommended) way to install spreads is inside of a
virtualenv [http://docs.python-guide.org/en/latest/dev/virtualenvs/], not system-wide, though you can do so as well, if you like.

Installation

First, ensure that you have all the dependencies installed:

$ sudo apt-get install python2.7 python2.7-dev python-virtualenv libusb-dev\
 libjpeg-dev libtiff-dev libqt4-core rubygems ruby-rmagick libmagickwand-dev\
 ruby-hpricot scantailor djvulibre-bin libffi-dev libjpeg8-dev
$ sudo gem install pdfbeads
$ wget http://djvubind.googlecode.com/files/djvubind_1.2.1.deb
$ sudo dpkg -i djvubind_1.2.1.deb
Download the latest 'chdkptp' release from the website:
https://www.assembla.com/spaces/chdkptp/documents
$ sudo unzip chdkptp-<version>-<platform>.zip -d /usr/local/lib/chdkptp
$ virtualenv ~/.spreads
$ source ~/.spreads/bin/activate
$ pip install spreads
$ pip install spreads[chdkcamera]
$ pip install spreads[autorotate]

Configuration

Workflow

To begin, we run spreads in the wizard mode, which will guide us through
the whole workflow:

$ spread wizard ~/my_book

On startup, your cameras will simultaneously adjust their zoom levels and set
their focus. Once this is done, the application will ask you to press one of
your configured shooting keys (default: b or space). If you do so,
both cameras will take a picture simultaneously, which is then transferred to
our computer and stored under the correct filename in the raw subdirectory of
our project directory. Should you notice that you made a mistake during the
last capture, you can press r to discard the last capture and retake it.
Now scan as many pages as you need, when you’re done, press f to
quit the capturing process and continue to the next step.

Next, spreads will begin with the postprocessing of the captured images. If you
followed the instructions so far, it will first rotate the images, which,
depending on your CPU and the number of images might take a minute or two.
Afterwards, spreads will launch a ScanTailor process in the background,
that will generate a configuration file (stored under
~/my_book/my_book.ScanTailor). When it has finished, it will open the
ScanTailor GUI, so you can make your final adjustments to the configuration.
Save and close your project when you’re finished. spreads will then split the
configuration file into as many files as your computer has CPU cores and
perform the final ScanTailor step on all of them in parallel.

Finally, once ScanTailor has completed generating the final version of your
images (in the done folder), it will generate PDF and DJVU files from them,
which you will find under the ~/my_book directory.

If you want to know more about any of the above steps and how you can configure
them, check out the entries for the appropriate appropriate plugins.

GUI Wizard

Enabling the GUI

Usage

Webinterface

 © Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_static/wizard4.png
Postproces:

Starting postprocessing...
Rotating images in /tmp/demolraw
Generating ScanTailor configuration

_static/wizard3.png
Capturing from devices

Shot 12 pages in 0 minutes (1940 pages/hour)

Capture

Retake

Cancel

_static/wizard1.png
Welcome!

‘This wizard will guide you through the digitization workflow.

Please select a project directory.

Tmpidemo Browse

[Scantailor

Content detection mode [content
I~ Rotate pages

¥ Deskew pages

¥ split pages

¥ Detect page content

I~ skip manual correction

¥ Automatically detect margins

_static/comment.png

_static/file.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/wizard2.png
Capturing from devices

Press a capture key (default: Space, B) to begin capturing.

_static/icon.png

_static/comment-close.png

_static/up-pressed.png

_static/wizard5.png
Generating output files

Generating output files...
Assembling PDF.
Assembling DJVU.

_static/down.png

_static/monk.png
Speads

_static/down-pressed.png

_modules/spreads/cli.html

 Navigation

 		
 index

 		
 api |

 		
 modules |

 		spreads 0.5git20150526.c802 documentation »

 		Module code »

 Source code for spreads.cli

-*- coding: utf-8 -*-

Copyright (C) 2014 Johannes Baiter <johannes.baiter@gmail.com>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
Command-Line interface for configuration, capture, output and postprocessing.
"""

from __future__ import division, unicode_literals, print_function

import sys
import time

import colorama

import spreads.workflow
import spreads.plugin as plugin
from spreads.util import DeviceException, colorize

if sys.platform == 'win32':
 # On Windows, getch is included in the standard library
 import msvcrt
 getch = msvcrt.getch()
else:
 # On POSIX systems we have to do it ourselves
 import termios
 import tty

[docs] def getch():
 """ Waits for a single character to be entered on stdin and returns it.

 :return: Character that was entered
 :rtype: str
 """
 fd = sys.stdin.fileno()
 old = termios.tcgetattr(fd)
 char = None
 try:
 tty.setraw(fd)
 char = sys.stdin.read(1)
 finally:
 termios.tcsetattr(fd, termios.TCSADRAIN, old)
 return char

[docs]def draw_progress(progress):
 """ Draw a progress bar to stdout.

 :param progress: Progress value between 0 and 1
 :type progress: float
 """
 width = 32
 num_bars = int(width*progress/1.0)
 sys.stdout.write('[{0}{1}] {2}%\r'.format(
 '#'*num_bars,
 ' '*(width-num_bars), int(progress*100)))
 sys.stdout.flush()

def _select_driver(current):
 """ Display driver selection dialog.

 :param current: Name of currently selected driver
 :return: Name of newly selected driver
 """
 print(colorize("Please select a device driver from the following list:",
 colorama.Fore.BLUE))
 # Add None as an option to configure spreads without a device
 available_drivers = plugin.available_drivers() + [None]
 print(" [0]: Keep current ({0})".format(current))
 for pos, ext in enumerate(available_drivers, 1):
 print(" [{0}]: {1}".format(pos, ext))
 while True:
 selection = raw_input("Select a driver: ")
 if not selection or int(selection) == 0:
 return current
 if not selection.isdigit() or int(selection) > len(available_drivers):
 print(colorize("Please select a number in the range of 0 to {0}"
 .format(len(available_drivers)), colorama.Fore.RED))
 continue
 driver = unicode(available_drivers[int(selection)-1])
 print(colorize("Selected \"{0}\" as device driver".format(driver),
 colorama.Fore.GREEN))
 return driver

def _select_plugins(preselected=None):
 """ Display plugin selection dialog.

 :param preselected: Names of currently selected plugins
 :return: Names of newly selected plugins
 """
 if preselected is None:
 selected_plugins = []
 else:
 # Create a local clone of the preselected list
 selected_plugins = preselected[:]
 print("Please select your desired plugins from the following list:")
 available_plugins = plugin.available_plugins()
 while True:
 for pos, ext in enumerate(available_plugins, 1):
 print(" {0} {1}: {2}"
 .format('x' if ext in selected_plugins else ' ', pos, ext))
 selection = raw_input("Select a plugin (or hit enter to finish): ")
 if not selection:
 break
 if not selection.isdigit() or int(selection) > len(available_plugins):
 print(colorize("Please select a number in the range of 1 to {0}"
 .format(len(available_plugins)), colorama.Fore.RED))
 continue
 plugin_name = available_plugins[int(selection)-1]
 if plugin_name in selected_plugins:
 selected_plugins.remove(plugin_name)
 else:
 selected_plugins.append(plugin_name)
 return selected_plugins

def _setup_processing_pipeline(config):
 """ Display dialog to configure order of postprocessing plugins and update
 the configuration accordingly.

 :param config: Currently active global configuration
 :type config: :py:class:`spreads.config.Configuration`
 """
 # Only get names of postprocessing plugins. For this we have to load all
 # enabled plugins first and check if they implement the correct hook.
 exts = [name for name, cls in plugin.get_plugins(*config["plugins"].get())
 .iteritems() if issubclass(cls, plugin.ProcessHooksMixin)]
 if not exts:
 return
 print("The following postprocessing plugins were detected:")
 print("\n".join(" - {0}".format(ext) for ext in exts))
 while True:
 answer = raw_input("Please enter the extensions in the order that they"
 " should be invoked, separated by commas or hit"
 " enter to keep the current order:\n")
 if not answer:
 plugins = exts
 else:
 plugins = [x.strip() for x in answer.split(',')]
 if any(x not in exts for x in plugins):
 print(colorize("At least one of the entered extensions was not"
 "found, please try again!", colorama.Fore.RED))
 else:
 break
 # Append other plugins after the postprocessing plugins
 config["plugins"] = plugins + [x for x in config["plugins"].get()
 if x not in plugins]

def _set_device_target_page(config, target_page):
 """ Display dialog for setting the target page on a device.

 :param config: Currently active global configuration
 :type config: :py:class:`spreads.config.Configuration`
 :param target_page: Target page to set on the device
 :type target_page: One of 'odd' or 'even'
 """
 print("Please connect and turn on the device labeled \'{0}\'"
 .format(target_page))
 print("Press any key when ready.")
 getch()
 devs = plugin.get_devices(config, force_reload=True)
 if len(devs) > 1:
 raise DeviceException("Please ensure that only one device is"
 " turned on!")
 if not devs:
 raise DeviceException("No device found!")
 devs[0].set_target_page(target_page)
 print(colorize("Configured \'{0}\' device.".format(target_page),
 colorama.Fore.GREEN))
 print("Please turn off the device.")
 print("Press any key when ready.")
 getch()

[docs]def configure(config):
 """ Configuration subcommand that runs through the various dialogs, builds
 a new configuration and writes it to disk.

 :param config: Currently active global configuration
 :type config: :py:class:`spreads.config.Configuration`
 """
 old_plugins = config["plugins"].get()
 driver_name = _select_driver(
 config["driver"].get() if 'driver' in config.keys() else None)
 if driver_name:
 config["driver"] = driver_name
 driver = plugin.get_driver(config["driver"].get())
 else:
 driver = None
 # Save driver
 config.dump(filename=config.cfg_path)

 config["plugins"] = _select_plugins(old_plugins)
 _setup_processing_pipeline(config)

 # Load default configuration for newly added plugins
 new_plugins = [x for x in config["plugins"].get() if x not in old_plugins]
 for name in new_plugins:
 if name not in config.templates:
 continue
 config.set_from_template(name, config.templates[name])

 # Save plugins
 config.dump(filename=config.cfg_path)

 # We only need to set the device target_page if the driver supports
 # shooting with two devices
 if driver and plugin.DeviceFeatures.IS_CAMERA in driver.features:
 answer = raw_input(
 "Do you want to configure the target_page of your devices?\n"
 "(Required for shooting with two devices) [y/N]: ")
 answer = True if answer.lower() == 'y' else False
 if answer:
 print("Setting target page on cameras")
 for target_page in ('odd', 'even'):
 _set_device_target_page(config, target_page)

 answer = raw_input("Do you want to setup the focus for your cameras? "
 "[y/N]: ")
 answer = True if answer.lower() == 'y' else False
 if answer:
 # TODO: Set focus for both devices independently
 print("Please turn on one of your capture devices.\n"
 "Press any key to continue")
 getch()
 devs = plugin.get_devices(config, force_reload=True)
 print("Please put a book with as little whitespace as possible "
 "under your cameras.\nPress any button to continue")
 getch()
 focus = devs[0]._acquire_focus()
 config['device']['focus_mode'] = 'manual'
 config['device']['focus_distance'] = focus
 else:
 config['device']['focus_mode'] = 'autofocus_all'
 print("Configuration file written to '{0}'".format(config.cfg_path))
 config.dump(filename=config.cfg_path)

[docs]def capture(config):
 """ Dialog to run through the capture process.

 :param config: Currently active global configuration
 :type config: :py:class:`spreads.config.Configuration`
 """
 path = config['path'].get()
 workflow = spreads.workflow.Workflow(config=config, path=path)
 spreads.workflow.on_created.send(workflow)
 capture_keys = workflow.config['core']['capture_keys'].as_str_seq()

 # Some closures
 def _refresh_stats():
 """ Callback that prints up-to-date capture statistics to stdout """
 if _refresh_stats.start_time is not None:
 pages_per_hour = ((3600/(time.time() -
 _refresh_stats.start_time)) *
 len(workflow.pages))
 else:
 pages_per_hour = 0.0
 _refresh_stats.start_time = time.time()
 status = ("\rShot {0: >3} pages [{1: >4.0f}/h] "
 .format(len(workflow.pages), pages_per_hour))
 sys.stdout.write(status)
 sys.stdout.flush()
 _refresh_stats.start_time = None

 def _trigger_loop():
 """ Waits for input on stdin and launches appropriate actions. """
 is_posix = sys.platform != 'win32'
 old_count = len(workflow.pages)
 if is_posix:
 import select
 old_settings = termios.tcgetattr(sys.stdin)

 def data_available():
 return (select.select([sys.stdin], [], [], 0) ==
 ([sys.stdin], [], []))

 def read_char():
 return sys.stdin.read(1)

 else:
 data_available = msvcrt.kbhit
 read_char = msvcrt.getch

 try:
 if is_posix:
 tty.setcbreak(sys.stdin.fileno())
 while True:
 time.sleep(0.01)
 if len(workflow.pages) != old_count:
 old_count = len(workflow.pages)
 _refresh_stats()
 if not data_available():
 continue
 char = read_char()
 if char in tuple(capture_keys) + ('r',):
 # Capture or retake
 workflow.capture(retake=(char == 'r'))
 _refresh_stats()
 elif char == 'f':
 # Finish capturing
 break
 finally:
 if is_posix:
 termios.tcsetattr(sys.stdin, termios.TCSADRAIN, old_settings)

 if len(workflow.devices) not in (1, 2):
 raise DeviceException("Please connect and turn on one or two"
 " pre-configured devices! ({0} were"
 " found)".format(len(workflow.devices)))
 print(colorize("Found {0} devices!".format(len(workflow.devices)),
 colorama.Fore.GREEN))
 if any(not x.target_page for x in workflow.devices):
 raise DeviceException("At least one of the devices has not been"
 " properly configured, please re-run the"
 " program with the \'configure\' option!")
 # Set up for capturing
 print("Setting up devices for capturing.")
 workflow.prepare_capture()

 print("({0}) capture | (r) retake last shot | (f) finish "
 .format("/".join(capture_keys)))
 # Start trigger loop
 _trigger_loop()

 workflow.finish_capture()

def _update_callback(_, changes):
 """ Signal handler callback that draws a step's progress. """
 if 'status' in changes and 'step_progress' in changes['status']:
 draw_progress(changes['status']['step_progress'])

[docs]def postprocess(config):
 """ Launch postprocessing plugins and display their progress

 :param config: Currently active global configuration
 :type config: :py:class:`spreads.config.Configuration`
 """
 path = config['path'].get()
 workflow = spreads.workflow.Workflow(config=config, path=path)
 draw_progress(0.0)
 spreads.workflow.on_modified.connect(_update_callback, sender=workflow,
 weak=False)
 workflow.process()

[docs]def output(config):
 """ Launch output plugins and display their progress

 :param config: Currently active global configuration
 :type config: :py:class:`spreads.config.Configuration`
 """
 path = config['path'].get()
 workflow = spreads.workflow.Workflow(config=config, path=path)
 draw_progress(0)
 spreads.workflow.on_modified.connect(_update_callback, sender=workflow,
 weak=False)
 workflow.output()

[docs]def wizard(config):
 """ Launch every step in succession with the same configuration.

 :param config: Currently active global configuration
 :type config: :py:class:`spreads.config.Configuration`
 """
 print("==========================\n",
 "Starting capturing process\n",
 "==========================")
 capture(config)

 print("=======================\n"
 "Starting postprocessing\n"
 "=======================")
 postprocess(config)

 print("=================\n",
 "Generating output\n"
 "=================")
 output(config)

 © Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

_modules/spreads/util.html

 Navigation

 		
 index

 		
 api |

 		
 modules |

 		spreads 0.5git20150526.c802 documentation »

 		Module code »

 Source code for spreads.util

-*- coding: utf-8 -*-

Copyright (C) 2014 Johannes Baiter <johannes.baiter@gmail.com>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
Various utility functions and classes.
"""

from __future__ import division, unicode_literals, print_function

import abc
import glob
import json
import logging
import os
import pkg_resources
import platform
import re
import subprocess
from unicodedata import normalize

import blinker
import colorama
import psutil
import roman
from colorama import Fore, Back, Style
from pathlib import Path

[docs]class SpreadsException(Exception):
 """ General exception """
 pass

[docs]class DeviceException(SpreadsException):
 """ Raised when a device-related error occured. """
 pass

[docs]class MissingDependencyException(SpreadsException):
 """ Raised when a dependency for a plugin is missing. """
 pass

[docs]def get_version():
 """ Get installed version via pkg_resources. """
 return pkg_resources.require('spreads')[0].version

[docs]def find_in_path(name):
 """ Find executable in $PATH.

 :param name: name of the executable
 :type name: unicode
 :returns: Path to executable or None if not found
 :rtype: unicode or None

 """
 candidates = None
 if is_os('windows'):
 import _winreg
 if name.startswith('scantailor'):
 try:
 cmd = _winreg.QueryValue(
 _winreg.HKEY_CLASSES_ROOT,
 'Scan Tailor Project\\shell\\open\\command')
 bin_path = cmd.split('" "')[0][1:]
 if name.endswith('-cli'):
 bin_path = bin_path[:-4] + "-cli.exe"
 return bin_path if os.path.exists(bin_path) else None
 except OSError:
 return None
 else:
 path_dirs = os.environ.get('PATH').split(';')
 path_dirs.append(os.getcwd())
 path_exts = os.environ.get('PATHEXT').split(';')
 candidates = (os.path.join(p, name + e)
 for p in path_dirs
 for e in path_exts)
 else:
 candidates = (os.path.join(p, name)
 for p in os.environ.get('PATH').split(':'))
 return next((c for c in candidates if os.path.exists(c)), None)

[docs]def is_os(osname):
 """ Check if the current operating system matches the expected.

 :param osname: Operating system name as returned by
 :py:func:`platform.system`
 :returns: Whether the OS matches or not
 :rtype: bool
 """
 return platform.system().lower() == osname

[docs]def check_futures_exceptions(futures):
 """" Go through passed :py:class:`concurrent.futures._base.Future` objects
 and re-raise the first Exception raised by any one of them.

 :param futures: Iterable that contains the futures to be checked
 :type futures: iterable with :py:class:`concurrent.futures._base.Future`
 instances
 """
 if any(x.exception() for x in futures):
 raise next(x for x in futures if x.exception()).exception()

[docs]def get_free_space(path):
 """ Return free space on file-system underlying the passed path.

 :param path: Path on file-system the free space of which is desired.
 :type path; unicode
 :return: Free space in bytes.
 :rtype: int

 """
 return psutil.disk_usage(unicode(path)).free

[docs]def get_subprocess(cmdline, **kwargs):
 """ Get a :py:class:`subprocess.Popen` instance.

 On Windows systems, the process will be ran in the background and won't
 open a cmd-window or appear in the taskbar.
 The function signature matches that of the :py:class:`subprocess.Popen`
 initialization method.
 """
 if subprocess.mswindows and 'startupinfo' not in kwargs:
 su = subprocess.STARTUPINFO()
 su.dwFlags |= subprocess.STARTF_USESHOWWINDOW
 su.wShowWindow = subprocess.SW_HIDE
 kwargs['startupinfo'] = su
 return subprocess.Popen(cmdline, **kwargs)

[docs]def wildcardify(pathnames):
 """ Try to generate a single path with wildcards that matches all
 `pathnames`.

 :param pathnames: List of pathnames to find a wildcard string for
 :type pathanmes: List of str/unicode
 :return: The wildcard string or None if none was found
 :rtype: unicode or None
 """
 wildcard_str = ""
 for idx, char in enumerate(pathnames[0]):
 if all(p[idx] == char for p in pathnames[1:]):
 wildcard_str += char
 elif not wildcard_str or wildcard_str[-1] != "*":
 wildcard_str += "*"
 matched_paths = glob.glob(wildcard_str)
 if not sorted(pathnames) == sorted(matched_paths):
 return None
 return wildcard_str

[docs]def diff_dicts(old, new):
 """ Get the difference between two dictionaries.

 :param old: Dictionary to base comparison on
 :type old: dict
 :param new: Dictionary to compare with
 :type new: dict
 :return: A (possibly nested) dictionary containing all items from `new`
 that differ from the ones in `old`
 :rtype: dict
 """
 out = {}
 for key, value in old.iteritems():
 if new[key] != value:
 out[key] = new[key]
 elif isinstance(value, dict):
 diff = diff_dicts(value, new[key])
 if diff:
 out[key] = diff
 return out

[docs]def slugify(text, delimiter=u'-'):
 """Generates an ASCII-only slug.

 Code adapted from Flask snipped by Armin Ronacher:
 http://flask.pocoo.org/snippets/5/

 :param text: Text to create slug for
 :type text: unicode
 :param delimiter: Delimiter to use in slug
 :type delimiter: unicode
 :return: The generated slug
 :rtype: unicode
 """
 punctuation_re = r'[\t !"#$%&\'()*\-/<=>?@\[\\\]^_`{|},.]+'
 result = []
 for word in re.split(punctuation_re, text.lower()):
 word = normalize('NFKD', word).encode('ascii', 'ignore')
 if word:
 result.append(word)
 return unicode(delimiter.join(result))

class _instancemethodwrapper(object): # noqa
 def __init__(self, callable):
 self.callable = callable
 self.__dontcall__ = False

 def __getattr__(self, key):
 return getattr(self.callable, key)

 def __call__(self, *args, **kwargs):
 if self.__dontcall__:
 raise TypeError('Attempted to call abstract method.')
 return self.callable(*args, **kwargs)

class _classmethod(classmethod): # noqa
 def __init__(self, func):
 super(_classmethod, self).__init__(func)
 isabstractmethod = getattr(func, '__isabstractmethod__', False)
 if isabstractmethod:
 self.__isabstractmethod__ = isabstractmethod

 def __get__(self, instance, owner):
 result = _instancemethodwrapper(super(_classmethod, self)
 .__get__(instance, owner))
 isabstractmethod = getattr(self, '__isabstractmethod__', False)
 if isabstractmethod:
 result.__isabstractmethod__ = isabstractmethod
 abstractmethods = getattr(owner, '__abstractmethods__', None)
 if abstractmethods and result.__name__ in abstractmethods:
 result.__dontcall__ = True
 return result

[docs]class abstractclassmethod(_classmethod): # noqa
 """ New decorator class that implements the @abstractclassmethod decorator
 added in Python 3.3 for Python 2.7.

 Kudos to http://stackoverflow.com/a/13640018/487903
 """
[docs] def __init__(self, func):
 func = abc.abstractmethod(func)
 super(abstractclassmethod, self).__init__(func)

[docs]class ColourStreamHandler(logging.StreamHandler):
 """ A colorized output StreamHandler

 Kudos to Leigh MacDonald: http://goo.gl/Lpr6C5
 """

 # Some basic colour scheme defaults
 colours = {
 'DEBUG': Fore.CYAN,
 'INFO': Fore.GREEN,
 'WARN': Fore.YELLOW,
 'WARNING': Fore.YELLOW,
 'ERROR': Fore.RED,
 'CRIT': Back.RED + Fore.WHITE,
 'CRITICAL': Back.RED + Fore.WHITE
 }

 @property
 def is_tty(self):
 """ Check if we are using a "real" TTY. If we are not using a TTY it
 means that the colour output should be disabled.

 :return: Using a TTY status
 :rtype: bool
 """
 try:
 return getattr(self.stream, 'isatty', None)()
 except:
 return False

 def emit(self, record):
 try:
 message = self.format(record)
 if not self.is_tty:
 self.stream.write(message)
 else:
 self.stream.write(self.colours[record.levelname] +
 message + Style.RESET_ALL)
 self.stream.write(getattr(self, 'terminator', '\n'))
 self.flush()
 except (KeyboardInterrupt, SystemExit):
 raise
 except:
 self.handleError(record)

[docs]class EventHandler(logging.Handler):
 """ Subclass of :py:class:`logging.Handler` that emits a
 :py:class:`blinker.base.Signal` whenever a new record is emitted.
 """
 signals = blinker.Namespace()
 on_log_emit = signals.signal('logrecord', doc="""\
 Sent when a log record was emitted.

 :keyword :class:`logging.LogRecord` record: the LogRecord
 """)

 def emit(self, record):
 self.on_log_emit.send(record=record)

[docs]def get_data_dir(create=False):
 """ Return (and optionally create) the user's default data directory.

 :param create: Create the data directory if it doesn't exist
 :type create: bool
 :return: Path to the default data directory
 :rtype: unicode
 """
 unix_dir_var = 'XDG_DATA_HOME'
 unix_dir_fallback = '~/.config'
 windows_dir_var = 'APPDATA'
 windows_dir_fallback = '~\\AppData\\Roaming'
 mac_dir = '~/Library/Application Support'
 base_dir = None
 if is_os('darwin'):
 if Path(unix_dir_fallback).exists:
 base_dir = unix_dir_fallback
 else:
 base_dir = mac_dir
 elif is_os('windows'):
 if windows_dir_var in os.environ:
 base_dir = os.environ[windows_dir_var]
 else:
 base_dir = windows_dir_fallback
 else:
 if unix_dir_var in os.environ:
 base_dir = os.environ[unix_dir_var]
 else:
 base_dir = unix_dir_fallback
 app_path = Path(base_dir)/'spreads'
 if create and not app_path.exists():
 app_path.mkdir()
 return unicode(app_path)

[docs]def colorize(text, color):
 """ Return text with a new ANSI foreground color.

 :param text: Text to be wrapped
 :param color: ANSI color to wrap text in
 :type color: str (from `colorama.ansi <http://git.io/9qnt0Q>`)
 :return: Colorized text
 """
 return color + text + colorama.Fore.RESET

[docs]class RomanNumeral(object):
 """ Number type that represents integers as Roman numerals and that
 can be used in all arithmetic operations applicable to integers.
 """
 @staticmethod
[docs] def is_roman(value):
 """ Check if `value` is a valid Roman numeral.

 :param value: Value to be checked
 :type value: unicode
 :returns: Whether the value is valid or not
 :rtype: bool
 """
 return bool(roman.romanNumeralPattern.match(value))

[docs] def __init__(self, value, case='upper'):
 """ Create a new instance.

 :param value: Value of the instance
 :type value: int, unicode containing valid Roman numeral or
 :py:class:`RomanNumeral`
 """
 self._val = self._to_int(value)
 self._case = case
 if isinstance(value, basestring) and not self.is_roman(value):
 self._case = 'lower'
 elif isinstance(value, RomanNumeral):
 self._case = value._case

 def _to_int(self, value):
 if isinstance(value, int):
 return value
 elif isinstance(value, basestring) and self.is_roman(value.upper()):
 return roman.fromRoman(value.upper())
 elif isinstance(value, RomanNumeral):
 return value._val
 else:
 raise ValueError("Value must be a valid roman numeral, a string"
 " representing one or an integer: '{0}'"
 .format(value))

 def __cmp__(self, other):
 if self._val > self._to_int(other):
 return 1
 elif self._val == self._to_int(other):
 return 0
 elif self._val < self._to_int(other):
 return -1

 def __add__(self, other):
 return RomanNumeral(self._val + self._to_int(other), self._case)

 def __sub__(self, other):
 return RomanNumeral(self._val - self._to_int(other), self._case)

 def __int__(self):
 return self._val

 def __str__(self):
 strval = roman.toRoman(self._val)
 if self._case == 'lower':
 return strval.lower()
 else:
 return strval

 def __unicode__(self):
 return unicode(str(self))

 def __repr__(self):
 return str(self)

[docs]class CustomJSONEncoder(json.JSONEncoder):
 """ Custom :py:class:`json.JSONEncoder`.

 Uses an object's `to_dict` method if present for serialization.

 Serializes :py:class:`pathlib.Path` instances to the string
 representation of their relative path to a BagIt-compliant directory or
 their absolute path if not applicable.
 """
 def default(self, obj):
 if hasattr(obj, 'to_dict'):
 return obj.to_dict()
 if isinstance(obj, Path):
 # Serialize paths that belong to a workflow as paths relative to
 # its base directory
 base = next((p for p in obj.parents if (p/'bagit.txt').exists()),
 None)
 if base:
 return unicode(obj.relative_to(base))
 else:
 return unicode(obj.absolute())
 return json.JSONEncoder.default(self, obj)

 © Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

_static/logo.png
é Spreads

_modules/index.html

 Navigation

 		
 index

 		
 api |

 		
 modules |

 		spreads 0.5git20150526.c802 documentation »

 All modules for which code is available

		blinker.base

		spreads.cli

		spreads.config

		spreads.main

		spreads.metadata

		spreads.plugin

		spreads.tkconfigure

		spreads.util

		spreads.workflow

 © Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

_modules/spreads/config.html

 Navigation

 		
 index

 		
 api |

 		
 modules |

 		spreads 0.5git20150526.c802 documentation »

 		Module code »

 Source code for spreads.config

-*- coding: utf-8 -*-

Copyright (C) 2014 Johannes Baiter <johannes.baiter@gmail.com>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
Configuration entities.
"""

from __future__ import unicode_literals

import copy
import logging

import spreads.vendor.confit as confit
from pathlib import Path

import spreads.util as util

[docs]class OptionTemplate(object):
 """ Definition of a configuration option.

 :attr value: The default value for the option or a list of available
 options if :py:attr`selectable` is True
 :type value: object (or list/tuple when :py:attr:`selectable` is True)
 :attr docstring: A string explaining the configuration option
 :type docstring: unicode
 :attr selectable: Make the `OptionTemplate` a selectable, i.e. value
 contains a list or tuple of acceptable values for this
 option, with the first member being the default
 selection.
 :type selectable: bool
 :attr advanced: Whether the option is an advanced option
 :type advanced: bool
 :attr depends: Make option dependant of some other setting (if passed a
 dict) or another plugin (if passed a string)
 :type depends: dict/str
 """

[docs] def __init__(self, value, docstring=None, selectable=False,
 advanced=False, depends=None):
 self.value = value
 self.docstring = docstring
 self.selectable = selectable
 self.advanced = advanced
 self.depends = depends

 def __repr__(self):
 return ("OptionTemplate(value={0}, docstring={1}, selectable={2}"
 " advanced={3}, depends={4})"
 .format(repr(self.value), repr(self.docstring),
 repr(self.selectable), repr(self.advanced),
 repr(self.depends)))

Configuration templates for the core

CORE_OPTIONS = {
 'verbose': OptionTemplate(value=False,
 docstring="Enable verbose output"),
 'logfile': OptionTemplate(
 value=unicode(Path(util.get_data_dir())/'spreads.log'),
 docstring="Path to logfile"),
 'loglevel': OptionTemplate(value=['info', 'critical', 'error',
 'warning', 'debug'],
 docstring="Logging level for logfile",
 selectable=True),
 'capture_keys': OptionTemplate(value=[" ", "b"],
 docstring="Keys to trigger capture",
 selectable=False),
 'convert_old': OptionTemplate(
 value=True,
 docstring=("Convert workflows from older spreads version to the new "
 "directory layout."),
 advanced=True)
}

[docs]class Configuration(object):
 """ Entity managing configuration state.

 Uses :py:class:`confit.Configuration` underneath the hood and follows
 its 'overlay'-principle.
 Proxies :py:meth:`__getitem__` and :py:meth:`__setitem__` from it, so
 it can be used as a dict-like type.
 """
[docs] def __init__(self, appname='spreads'):
 """ Create new instance and load default and current configuration.

 :param appname: Application name, configuration will be loaded from
 this name's default configuration directory
 """
 self._config = confit.Configuration(appname, __name__)
 self._config.read()
 if 'plugins' not in self._config.keys():
 self['plugins'] = []
 self.load_templates()
 self.load_defaults(overwrite=False)

 # --- #
 # Proxied methods from confit.Configuration #

 def __getitem__(self, key):
 """ See :py:meth:`confit.ConfigView.__getitem__` """
 return self._config[key]

 def __setitem__(self, key, value):
 """ See :py:meth:`confit.ConfigView.__setitem__` """
 self._config[key] = value

[docs] def keys(self):
 """ See :py:meth:`confit.ConfigView.keys` """
 return self._config.keys()

[docs] def dump(self, filename=None, full=True, sections=None):
 """ See :py:meth:`confit.Configuration.dump` """
 return self._config.dump(unicode(filename), full, sections)

[docs] def flatten(self):
 """ See :py:meth:`confit.Configuration.flatten` """
 return self._config.flatten()
 # --- #

[docs] def load_templates(self):
 """ Get all available configuration templates from the activated
 plugins.

 :returns: Mapping from plugin name to template mappings.
 :rtype: dict unicode -> (dict unicode ->
 :py:class:`OptionTemplate`)
 """
 import spreads.plugin
 self.templates = {}
 self.templates['core'] = CORE_OPTIONS
 if 'driver' in self.keys():
 driver_name = self["driver"].get()
 self.templates['device'] = (
 spreads.plugin.get_driver(driver_name)
 .configuration_template())
 plugins = spreads.plugin.get_plugins(*self["plugins"].get())
 for name, plugin in plugins.iteritems():
 tmpl = plugin.configuration_template()
 if tmpl:
 self.templates[name] = tmpl
 return self.templates

 @property
 def cfg_path(self):
 """ Path to YAML file of the user-specific configuration.

 :returns: Path
 :rtype: :py:class:`pathlib.Path`
 """
 return Path(self._config.config_dir()) / confit.CONFIG_FILENAME

[docs] def with_overlay(self, overlay):
 """ Get a new configuration that overlays the provided configuration
 over the present configuration.

 :param overlay: The configuration to be overlaid
 :type overlay: :py:class:`confit.ConfigSource` or dict
 :return: A new, merged configuration
 :rtype: :py:class:`confit.Configuration`
 """
 new_config = copy.deepcopy(self._config)
 new_config.set(overlay)
 return new_config

[docs] def as_view(self):
 """ Return the `Configuration` as a :py:class:`confit.ConfigView`
 instance.
 """
 return self._config

[docs] def load_defaults(self, overwrite=True):
 """ Load default settings from option templates.

 :param overwrite: Whether to overwrite already existing values
 """
 for section, template in self.templates.iteritems():
 self.set_from_template(section, template, overwrite)

[docs] def set_from_template(self, section, template, overwrite=True):
 """ Set default options from templates.

 :param section: Target section for settings
 :type section: unicode
 :type template: :py:class:`OptionTemplate`
 :param overwrite: Whether to overwrite already existing values
 """
 old_settings = self[section].flatten()
 settings = copy.deepcopy(old_settings)
 for key, option in template.iteritems():
 logging.info("Adding setting {0} from {1}"
 .format(key, section))
 if not overwrite and key in old_settings:
 continue
 if option.selectable:
 settings[key] = option.value[0]
 else:
 settings[key] = option.value
 self[section].set(settings)

[docs] def set_from_args(self, args):
 """ Apply settings from parsed command-line arguments.

 :param args: Parsed command-line arguments
 :type args: :py:class:`argparse.Namespace`
 """
 for argkey, value in args.__dict__.iteritems():
 skip = (value is None or
 argkey == 'subcommand' or
 argkey.startswith('_'))
 if skip:
 continue
 if '.' in argkey:
 section, key = argkey.split('.')
 self[section][key] = value
 else:
 self[argkey] = value

 © Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

_modules/spreads/main.html

 Navigation

 		
 index

 		
 api |

 		
 modules |

 		spreads 0.5git20150526.c802 documentation »

 		Module code »

 Source code for spreads.main

-*- coding: utf-8 -*-

Copyright (C) 2014 Johannes Baiter <johannes.baiter@gmail.com>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
Core logic for application startup and parsing of command-line arguments
"""

from __future__ import division, unicode_literals, print_function

import argparse
import logging
import logging.handlers
import os
import sys
import traceback

import colorama
from spreads.vendor.confit import ConfigError
from pathlib import Path

import spreads.cli as cli
import spreads.plugin as plugin
import spreads.util as util
from spreads.config import Configuration

[docs]def add_argument_from_template(extname, key, template, parser, current_val):
 """ Add option from `template` to `parser` under the name `key`.

 Templates with a boolean value type will create a `--<key>` or
 `--no-<key>` flag, depending on their current value.

 :param extname: Name of the configuration section this option's result
 should be stored in
 :param key: Configuration key in section, will also determine the
 name of the argument.
 :param template: Template for the argument
 :type template: :py:class:`spreads.config.OptionTemplate`
 :param parser: Argument parser the argument should be added to
 :type parser: :py:class:`argparse.ArgumentParser`
 :param current_val: Current value of the option
 """
 flag = "--{0}".format(key.replace('_', '-'))
 default = current_val
 kwargs = {'help': ("{0} [default: {1}]"
 .format(template.docstring, default)),
 'dest': "{0}{1}".format(extname, '.'+key if extname else key)}
 if isinstance(template.value, basestring) or template.value is None:
 kwargs['type'] = unicode
 kwargs['metavar'] = "<str>"
 elif isinstance(template.value, bool):
 kwargs['help'] = template.docstring
 if current_val:
 flag = "--no-{0}".format(key.replace('_', '-'))
 kwargs['help'] = ("Disable {0}"
 .format(template.docstring.lower()))
 kwargs['action'] = "store_false"
 else:
 kwargs['action'] = "store_true"
 elif isinstance(template.value, float):
 kwargs['type'] = float
 kwargs['metavar'] = "<float>"
 elif isinstance(template.value, int):
 kwargs['type'] = int
 kwargs['metavar'] = "<int>"
 elif template.selectable:
 kwargs['type'] = type(template.value[0])
 kwargs['metavar'] = "<{0}>".format("/".join(template.value))
 kwargs['choices'] = template.value
 else:
 raise TypeError("Unsupported option type")
 parser.add_argument(flag, **kwargs)

[docs]def should_show_argument(template, active_plugins):
 """ Checks the :py:attr:`spreads.config.OptionTemplate.depends` attribute
 for dependencies on other plugins and validates them against the list of
 activated plugins.

 We do not validate dependencies on other configuration settings because
 we don't have access to the final state of the configuration at this time,
 since the configuration can potentially be changed by other command-line
 flags.

 :param template: Template to check
 :type template: :py:class:`spreads.config.OptionTemplate`
 :param active_plugins: List of names of activated plugins
 :returns: Whether or not the argument should be displayed
 """
 if template.depends is None or type(template.depends) == dict:
 return True
 else:
 return template.depends in active_plugins

[docs]def setup_parser(config):
 """ Sets up an :py:class:`argparse.ArgumentParser` instance with all
 options and subcommands that are available in the core and activated
 plugins.

 :param config: Current application configuration
 :type config: :py:class:`spreads.config.Configuration`
 :returns: Fully initialized argument parser
 :rtype: :py:class:`argparse.ArgumentParser`
 """
 plugins = plugin.get_plugins(*config["plugins"].get())

 def _add_arguments(parsers, mixins, extra_names=None):
 if extra_names is None:
 extra_names = []
 for parser in parsers:
 # Only plugins that implement the capture or trigger hook mixins
 # and the currently active device configuration are relevant for
 # this subcommand.
 ext_names = [name for name, cls in plugins.iteritems()
 if any(issubclass(cls, mixin) for mixin in mixins)]
 ext_names.extend(extra_names)
 for ext in ext_names:
 for key, tmpl in config.templates.get(ext, {}).iteritems():
 if not should_show_argument(option,
 config['plugins'].get()):
 continue
 try:
 add_argument_from_template(ext, key, tmpl, parser,
 config[ext][key].get())
 except TypeError:
 continue

 rootparser = argparse.ArgumentParser(
 description="Scanning Tool for DIY Book Scanner",
 formatter_class=argparse.RawDescriptionHelpFormatter)

 rootparser.add_argument(
 '-V', '--version', action='version',
 version=(
 "spreads {0}\n\n"
 "Licensed under the terms of the GNU Affero General Public "
 "License 3.0.\n"
 "(C) 2013-2014 Johannes Baiter <johannes.baiter@gmail.com>\n"
 "For a complete list of contributors see:\n"
 "https://github.com/DIYBookScanner/spreads/graphs/contributors\n\n"
 .format(util.get_version())))

 for key, option in config.templates['core'].iteritems():
 if not should_show_argument(option, config['plugins'].get()):
 continue
 try:
 add_argument_from_template('core', key, option, rootparser,
 config['core'][key].get())
 except TypeError:
 continue

 subparsers = rootparser.add_subparsers()

 wizard_parser = subparsers.add_parser(
 'wizard', help="Interactive mode")
 wizard_parser.add_argument(
 "path", type=unicode, help="Project path")
 wizard_parser.set_defaults(subcommand=cli.wizard)

 config_parser = subparsers.add_parser(
 'configure', help="Perform initial configuration")
 config_parser.set_defaults(subcommand=cli.configure)

 try:
 import spreads.tkconfigure as tkconfigure
 guiconfig_parser = subparsers.add_parser(
 'guiconfigure', help="Perform initial configuration with a GUI")
 guiconfig_parser.set_defaults(subcommand=tkconfigure.configure)
 except ImportError:
 pass

 capture_parser = subparsers.add_parser(
 'capture', help="Start the capturing workflow")
 capture_parser.add_argument(
 "path", type=unicode, help="Project path")
 capture_parser.set_defaults(subcommand=cli.capture)
 # Add arguments from plugins
 _add_arguments(parsers=(capture_parser, wizard_parser),
 mixins=(plugin.CaptureHooksMixin, plugin.TriggerHooksMixin),
 extra_names=('device',))

 postprocess_parser = subparsers.add_parser(
 'postprocess',
 help="Postprocess scanned images.")
 postprocess_parser.add_argument(
 "path", type=unicode, help="Project path")
 postprocess_parser.add_argument(
 "--jobs", "-j", dest="jobs", type=int, default=None,
 metavar="<int>", help="Number of concurrent processes")
 postprocess_parser.set_defaults(subcommand=cli.postprocess)
 _add_arguments(parsers=(postprocess_parser, wizard_parser),
 mixins=(plugin.ProcessHooksMixin,))

 output_parser = subparsers.add_parser(
 'output',
 help="Generate output files.")
 output_parser.add_argument(
 "path", type=unicode, help="Project path")
 output_parser.set_defaults(subcommand=cli.output)
 _add_arguments(parsers=(output_parser, wizard_parser),
 mixins=(plugin.OutputHooksMixin,))

 # Add custom subcommands from plugins
 if config["plugins"].get():
 classes = (cls for cls in plugins.values()
 if issubclass(cls, plugin.SubcommandHooksMixin))
 for cls in classes:
 cls.add_command_parser(subparsers, config)
 return rootparser

[docs]def setup_logging(config):
 """ Conigure application-wide logger.

 :param config: Global configuration
 :type config: :py:class:`spreads.config.Configuration`
 """
 loglevel = config['core']['loglevel'].as_choice({
 'none': logging.NOTSET,
 'info': logging.INFO,
 'debug': logging.DEBUG,
 'warning': logging.WARNING,
 'error': logging.ERROR,
 'critical': logging.CRITICAL,
 })
 logger = logging.getLogger()
 # Remove previous handlers
 if logger.handlers:
 for handler in logger.handlers:
 logger.removeHandler(handler)

 # Add stderr handler
 if util.is_os('windows'):
 stdout_handler = logging.StreamHandler()
 else:
 stdout_handler = util.ColourStreamHandler()
 stdout_handler.setLevel(logging.DEBUG if config['core']['verbose'].get()
 else logging.WARNING)
 stdout_handler.setFormatter(logging.Formatter("%(name)s: %(message)s"))
 logger.addHandler(stdout_handler)

 # Add event handler
 logger.addHandler(util.EventHandler())

 # Add logfile handler
 logfile = Path(config['core']['logfile'].as_filename())
 if not logfile.parent.exists():
 logfile.parent.mkdir()
 file_handler = logging.handlers.RotatingFileHandler(
 filename=unicode(logfile), maxBytes=512*1024, backupCount=1)
 file_handler.setFormatter(logging.Formatter(
 '%(relativeCreated)s %(name)-5s %(levelname)-8s %(message)s'))
 file_handler.setLevel(loglevel)
 logger.addHandler(file_handler)

 # Set root logger level (needed for web plugin)
 logger.setLevel(logging.DEBUG)

[docs]def run_config_windows():
 """ Entry point to launch graphical configuration dialog on Windows. """
 # Needed so that .exe files in Program Files can be launched.
 os.environ['PATH'] += (";" + os.environ['PROGRAMFILES'])
 config = Configuration()
 setup_logging(config)
 from spreads.tkconfigure import configure
 configure(config)

[docs]def run_service_windows():
 """ Entry point to launch web plugin server on Windows. """
 # Needed so that .exe files in Program Files can be launched.
 os.environ['PATH'] += (";" + os.environ['PROGRAMFILES'])
 config = Configuration()
 config['core']['loglevel'] = 'debug'
 if not config['plugins'].get():
 config['plugins'] = ['autorotate', 'scantailor', 'tesseract',
 'pdfbeads', 'web']
 config.load_defaults(overwrite=False)
 setup_logging(config)
 from spreadsplug.web import run_windows_service
 config['web']['mode'] = 'processor'
 run_windows_service(config)

[docs]def run():
 """ Setup the application and run subcommand"""
 config = Configuration()
 parser = setup_parser(config)
 args = parser.parse_args()
 config.set_from_args(args)
 setup_logging(config)
 args.subcommand(config)

[docs]def main():
 """ Entry point for `spread` command-line application. """
 # Initialize color support
 colorama.init()

 def print_error(x):
 print(util.colorize(x, colorama.Fore.RED),
 file=sys.stderr)

 try:
 run()
 except util.DeviceException as e:
 typ, val, tb = sys.exc_info()
 logging.debug("".join(traceback.format_exception(typ, val, tb)))
 print_error("There is a problem with your device configuration:")
 print_error(e.message)
 except ConfigError as e:
 typ, val, tb = sys.exc_info()
 logging.debug("".join(traceback.format_exception(typ, val, tb)))
 print_error("There is a problem with your configuration file(s):")
 print_error(e.message)
 except util.MissingDependencyException as e:
 typ, val, tb = sys.exc_info()
 logging.debug("".join(traceback.format_exception(typ, val, tb)))
 print_error("You are missing a dependency for one of your "
 "enabled plugins:")
 print_error(e.message)
 except KeyboardInterrupt:
 colorama.deinit()
 sys.exit(1)
 except Exception as e:
 typ, val, tb = sys.exc_info()
 print_error("spreads encountered an error:")
 print_error("".join(traceback.format_exception(typ, val, tb)))
 # Deinitialize color support
 colorama.deinit()

if __name__ == '__main__':
 logging.basicConfig(loglevel=logging.ERROR)
 main()

 © Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

_modules/spreads/workflow.html

 Navigation

 		
 index

 		
 api |

 		
 modules |

 		spreads 0.5git20150526.c802 documentation »

 		Module code »

 Source code for spreads.workflow

-*- coding: utf-8 -*-

Copyright (C) 2014 Johannes Baiter <johannes.baiter@gmail.com>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
Central :py:class:`Workflow` entity (and its signals) and various associated
entities.
"""

from __future__ import division, unicode_literals

import copy
import logging
import shutil
import threading
import uuid
from datetime import datetime

import concurrent.futures as concfut
import spreads.vendor.bagit as bagit
import spreads.vendor.confit as confit
import json
from blinker import Namespace
from pathlib import Path

import spreads.plugin as plugin
import spreads.util as util
from spreads.config import Configuration
from spreads.metadata import Metadata

try:
 from jpegtran import JPEGImage
 HAS_JPEGTRAN = True
except ImportError:
 HAS_JPEGTRAN = False
 from PIL import Image

signals = Namespace()
on_created = signals.signal('workflow:created', doc="""\
Sent by a :class:`Workflow` when a new workflow was created.

:argument :class:`Workflow`: the newly created Workflow
""")

on_modified = signals.signal('workflow:modified', doc="""\
Sent by a :class:`Workflow` when it was modified.

:argument class:`Workflow`: the workflow that was modified
:keyword dict changes the modified attributes
""")

on_removed = signals.signal('workflow:removed', doc="""\
Sent by the removing code when a workflow was deleted.

:keyword unicode senderId: the ID of the :class:`Workflow` that was removed
""")

on_capture_triggered = signals.signal('workflow:capture-triggered', doc="""\
Sent by a :class:`Workflow` after a capture was triggered.

:argument :class:`Workflow`: the Workflow a capture was triggered on
""")

on_capture_succeeded = signals.signal('workflow:capture-succeeded', doc="""\
Sent by a :class:`Workflow` after a capture was successfully executed.

:argument :class:`Workflow`: the Workflow a capture was executed on
:keyword list<Path> pages: the pages that were captured
:keyword bool retake whether the shot was a retake
""")

on_capture_failed = signals.signal('workflow:capture-failed', doc="""\
Sent by a :class:`Workflow` after a capture failed.

:argument :class:`Workflow`: the Workflow the capture failed for
:keyword unicode message: A message that explains the cause of the
 failure
""")

def _signal_on_error(signal):
 """ Decorator for emitting a signal when a function throws an exception.

 :param signal: The signal to emit when an exception is thrown
 Should take the exception as its sole argument
 :type signal: blinker.Signal
 """
 def wrap(func):
 def wrapped_func(*args, **kwargs):
 try:
 func(*args, **kwargs)
 except Exception as e:
 signal.send(args[0], # self
 message=e.message)
 raise
 return wrapped_func
 return wrap

[docs]class ValidationError(ValueError):
 """ Raised when some kind of validation error occured.

 :attr message: General error message
 :attr errors: Mapping from field name to validation error message
 """
[docs] def __init__(self, message=None, **kwargs):
 """ Create new instance.

 ``**kwargs`` should be a mapping from a field name to an error
 message.
 """
 if message is None:
 message = "Invalid values for {0}".format(kwargs.keys())
 super(ValueError, self).__init__(message)
 self.errors = kwargs

[docs]class Page(object):
 """ Entity that holds information about a single page.

 :attr raw_image: The path to the raw image.
 :attr processed_images: A dictionary of plugin names mapped to the path of
 a processed file.
 :attr capture_num: The capture number of the page, i.e. at what
 position in the workflow it was recorded, including
 aborted and retaken shots.
 :attr sequence_num: The sequence number of the page, i.e. at what
 position in the list of 'good' captures it is.
 Usually identical with the position in the
 containing `pages` list. Defaults to the capture
 number.
 :attr page_label: A label for the page. Must be an integer, a string
 of digits or a roman numeral (e.g. 12, '12',
 'XII'). Defaults to the sequence number.
 """
 # FIXME: This type is insufficient for the case where the raw images
 # contain two individual pages, i.e. the whole bookspreads was captured in
 # a single image. How would we deal with that scenario?
 __slots__ = [b"sequence_num", b"capture_num", b"raw_image", b"page_label",
 b"processed_images"]

[docs] def __init__(self, raw_image, sequence_num=None, capture_num=None,
 page_label=None, processed_images=None):
 self.raw_image = raw_image
 self.processed_images = processed_images or {}
 if capture_num:
 self.capture_num = capture_num
 else:
 self.capture_num = int(raw_image.stem)
 self.sequence_num = sequence_num or self.capture_num
 if page_label:
 # TODO: Add support for letter numbering (e.g. 'a' -> 1,
 # 'aa' -> 27, 'zz' -> 52, etc)
 # TODO: Add support for prefixes (e.g. 'A-1')
 valid_string = (isinstance(page_label, basestring) and
 (page_label.isdigit() or
 util.RomanNumeral.is_roman(page_label.upper())))
 if not isinstance(page_label, int) and not valid_string:
 raise ValidationError(
 page_label=("Must be an integer, a string of digits, a "
 "roman numeral string or a RomanNumeral "
 "type"))
 self.page_label = str(page_label)
 else:
 self.page_label = unicode(self.sequence_num)

[docs] def get_latest_processed(self, image_only=True):
 """ Get the least recent postprocessed file

 :param image_only: Only return image files (e.g. no OCR files)
 :type image_only: bool
 :returns: Path to least recent postprocessed file
 :rtype: :py:class:`pathlib.Path`
 """
 img_exts = ('.jpg', '.jpeg', '.png', '.tif', '.tiff')
 paths = self.processed_images.values()
 if image_only:
 paths = [p for p in paths if p.suffix.lower() in img_exts]
 try:
 return sorted(paths,
 key=lambda p: p.stat().st_mtime, reverse=True)[0]
 except IndexError:
 return None

[docs] def to_dict(self):
 """ Serialize entity to a dict.

 Used by :py:class:`spreads.util.CustomJSONEncoder`.
 """
 return {
 'sequence_num': self.sequence_num,
 'capture_num': self.capture_num,
 'page_label': self.page_label,
 'raw_image': self.raw_image,
 'processed_images': self.processed_images,
 }

[docs]class TocEntry(object):
 """ Represent a 'table of contents' entry.

 :attr title: Label/title of the entry
 :attr start_page: First page of the entry
 :attr end_page: First page no longer part of the entry
 :attr children; Other :py:class:`TocEntry` objects that designate a
 sub-range of this entry
 """
 __slots__ = (b"title", b"start_page", b"end_page", b"children")

[docs] def __init__(self, title, start_page, end_page, children=None):
 self.title = title
 self.start_page = start_page
 self.end_page = end_page
 self.children = children

 def __repr__(self):
 return (
 u"TocEntry(title={0}, start_page={1}, end_page={2}, "
 u"children={3})"
).format(repr(self.title), repr(self.start_page), repr(self.end_page),
 repr(self.children))

[docs] def to_dict(self):
 """ Serialize entity to a dict.

 Used by :py:class:`spreads.util.CustomJSONEncoder`.
 """
 return {
 'title': self.title,
 'start_page': self.start_page.sequence_num,
 'end_page': self.end_page.sequence_num,
 'children': self.children
 }

[docs]class Workflow(object):
 """ Core entity for managing scanning workflows.

 :attr id: UUID for the workflow
 :attr status: Current status. Keys are ``step`` ('capture', 'process'
 or 'output'), ``step_progress`` (Progress as a value
 between 0 and 1) and ``prepared`` (whether capture is
 already prepared).
 :type status: dict
 :attr path: Path to directory containing the
 workflow's data.
 :type path; :py:class:`pathlib.Path`
 :attr bag: Underlying BagIt data structure
 :type bag: py:class:`spreads.vendor.bagit.Bag`
 :attr slug: ASCIIfied version of workflow title without spaces.
 :attr config: Configuration for the worklfow, takes precedence
 over the global configuration).
 :type config: py:class:`confit.ConfigView`
 :attr metadata: Metadata, contains at least a ``title`` field.
 :type metadata: :py:class:`spreads.metadata.Metadata`
 :attr pages: Pages available in the workflow
 :type pages: list of :py:class:`Page`
 :attr table_of_contents: Table of contents entries in the workflow
 :type table_of_contents: list of :py:class:`TocEntry`
 :attr last_modified: Time of last modification
 :type last_modified: py:class:`datetime.datetime`
 :attr devices: Active devices
 :type devices: list of py:class:`spreads.plugin.DeviceDriver`
 :attr out_files: Generated output files
 :type out_files: list of :py:class:`pathlib.Path`
 """
 # Class-wide cache of :py:class:`Workflow` instances
 _cache = {}

 def __new__(cls, *args, **kwargs):
 """ Automatically cache every new :py:class:`Workflow` instance. """
 on_created.connect(lambda sender, **kwargs: cls._add_to_cache(sender),
 weak=False)
 return super(Workflow, cls).__new__(cls, *args, **kwargs)

 @classmethod
[docs] def create(cls, location, metadata=None, config=None):
 """ Create a new Workflow.

 :param location: Base directory that the workflow should be created
 in
 :type location: unicode or :py:class:`pathlib.Path`
 :param metadata: Initial metadata for workflow. Must at least
 contain a `title` item.
 :type metadata: dict
 :param config: Initial configuration for workflow
 :type config: dict or :py:class:`spreads.config.Configuration`
 :return: The new instance
 :rtype: :py:class:`Workflow`
 """
 if not isinstance(location, Path):
 location = Path(location)
 if metadata is None or 'title' not in metadata:
 raise ValidationError(
 metadata={'title': 'Please specify at least a title'})
 path = Path(location/util.slugify(metadata['title']))
 if path.exists():
 raise ValidationError(
 name="A workflow with that title already exists")
 wf = cls(path=path, config=config, metadata=metadata)
 return wf

 @classmethod
 def _add_to_cache(cls, workflow):
 location = workflow.path.parent
 if location not in cls._cache:
 cls._cache[location] = [workflow]
 elif workflow not in Workflow._cache[location]:
 cls._cache[location].append(workflow)

 @classmethod
[docs] def find_all(cls, location, key='slug', reload=False):
 """ List all workflows in the given location.

 :param location: Location where the workflows are located
 :type location: unicode or :py:class:`pathlib.Path`
 :param key: Attribute to use as key for returned dict
 :type key: str/unicode
 :param reload: Do not load workflows from cache
 :type reload: bool
 :return: All found workflows
 :rtype: dict
 """
 if not isinstance(location, Path):
 location = Path(location)
 if key not in ('slug', 'id'):
 raise ValueError("'key' must be one of ('id', 'slug')")
 if location in cls._cache and not reload:
 found = cls._cache[location]
 else:
 found = []
 for candidate in location.iterdir():
 is_workflow = (location.is_dir() and
 ((candidate/'bagit.txt').exists or
 (candidate/'raw').exists))
 if not is_workflow:
 continue
 if not next((wf for wf in found if wf.path == candidate), None):
 logging.debug(
 "Cache missed, instantiating workflow from {0}."
 .format(candidate))
 try:
 workflow = cls(candidate)
 except bagit.BagError as e:
 logging.warn(e.message)
 continue
 found.append(workflow)
 cls._cache[location] = found
 return {getattr(wf, key): wf for wf in cls._cache[location]}

 @classmethod
[docs] def find_by_id(cls, location, id):
 """ Try to locate a workflow with the given id in a directory.

 :param location: Base directory that contains workflows to be
 searched among
 :type location: unicode or :py:class:`pathlib.Path`
 :param id: ID of workflow to be searched for
 :rtype: :py:class:`Workflow` or None
 """
 if not isinstance(location, Path):
 location = Path(location)
 try:
 return cls.find_all(location, key='id')[id]
 except KeyError:
 return None

 @classmethod
[docs] def find_by_slug(cls, location, slug):
 """ Try to locate a workflow that matches a given slug in a directory.

 :param location: Base directory that contains workflows to be
 searched among
 :type location: unicode or :py:class:`pathlib.Path`
 :param slug: Slug of workflow to be searched for
 :type slug: unicode
 :rtype: :py:class:`Workflow` or None
 """
 if not isinstance(location, Path):
 location = Path(location)
 try:
 return cls.find_all(location, key='slug')[slug]
 except KeyError:
 return None

 @classmethod
[docs] def remove(cls, workflow):
 """ Delete a workflow from the disk and cache.

 :param workflow: Workflow to be deleted
 :type workflow: :py:class:`Workflow`
 """
 wf_busy = (workflow.status['step'] is not None and
 workflow.status['step_progress'] < 1)
 if wf_busy:
 raise util.SpreadsException(
 "Cannot remove a workflow while it is busy."
 " (active step: '{0}')".format(workflow.status['step']))
 shutil.rmtree(unicode(workflow.path))
 cls._cache[workflow.path.parent].remove(workflow)
 on_removed.send(senderId=workflow.id)

[docs] def __init__(self, path, config=None, metadata=None):
 self._logger = logging.getLogger('Workflow')
 self._logger.debug("Initializing workflow {0}".format(path))

 self.status = {
 'step': None,
 'step_progress': None,
 'prepared': False
 }
 if not isinstance(path, Path):
 path = Path(path)
 self.path = path
 is_new = not self.path.exists()

 # See if supplied `config` is already a valid ConfigView object
 if isinstance(config, confit.ConfigView):
 self.config = config
 elif isinstance(config, Configuration):
 self.config = config.as_view()
 else:
 self.config = self._load_config(config)

 try:
 self.bag = bagit.Bag(unicode(self.path))
 except bagit.BagError:
 if self.config['core']['convert_old'].get(bool):
 # Convert non-bagit directories from older versions
 self.bag = bagit.Bag.convert_directory(unicode(self.path))
 self.pages = [Page(img)
 for img in (self.path/'data'/'raw').iterdir()]
 self._save_pages()
 else:
 raise bagit.BagError(
 "Specified workflow directory is not structured according "
 "to BagIt convertions and automatic conversion has been "
 "disabled (check `convert_old` setting)")
 if not self.slug:
 self.slug = util.slugify(unicode(self.path.name))
 if not self.id:
 self.id = unicode(uuid.uuid4())
 #: :py:class:`spreads.metadata.Metadata` instance that backs the
 #: corresponding getter and setter
 self._metadata = Metadata(self.path)

 # This will invoke the setter
 if metadata:
 self.metadata = metadata

 #: Lock that is held when a shot is being executed during the capture
 #: phase
 self._capture_lock = threading.RLock()
 #: List of :py:class:`spreads.plugin.DeviceDriver` instances that
 #: backs the corresponding getters and setters
 self._devices = None
 # Thread pool for background tasks
 self._threadpool = concfut.ThreadPoolExecutor(max_workers=1)
 # List of unfinished :py:class:`concurrent.futures.Future` instances
 self._pending_tasks = []

 # Filter out subcommand plugins, since these are not workflow-specific
 plugin_classes = [
 (name, cls)
 for name, cls in plugin.get_plugins(*self.config["plugins"]
 .get()).iteritems()
 if not cls.__bases__ == (plugin.SubcommandHooksMixin,)]
 self._plugins = [cls(self.config) for name, cls in plugin_classes]
 self.config['plugins'] = [name for name, cls in plugin_classes]
 self._save_config()

 self.pages = self._load_pages()
 self.table_of_contents = self._load_toc()

 if is_new:
 on_created.send(self, workflow=self)

 @property
 def id(self):
 return self.bag.info.get('spreads-id')

 @id.setter
 def id(self, value):
 self.bag.info['spreads-id'] = value

 @property
 def slug(self):
 # Read from Bag info
 return self.bag.info.get('spreads-slug')

 @slug.setter
 def slug(self, value):
 # TODO: Check to avoid duplicates
 self.bag.info['spreads-slug'] = value

 @property
 def last_modified(self):
 # We use the most recent of the modified timestamps of the two
 # checksum files of the BagIt directory, since any relevant changes
 # to the workflow's structure will cause a change in at least one
 # file hash.
 return datetime.fromtimestamp(
 max(Path(self.path/fname).stat().st_mtime
 for fname in ('manifest-md5.txt', 'tagmanifest-md5.txt')))

 @property
 def devices(self):
 if 'driver' not in self.config.keys():
 raise util.DeviceException(
 "No driver has been configured\n"
 "Please run `spread configure` to select a driver.")
 if self._devices is None:
 self._devices = plugin.get_devices(self.config, force_reload=True)
 if any(not dev.connected() for dev in self._devices):
 self._logger.warning(
 "At least one of the devices has been disconnected. "
 "Please make sure it has been re-enabled before taking "
 "another action.")
 self._devices = None
 return self._devices

 @property
 def is_single_camera(self):
 return len(self.devices) == 1

 def _fix_page_numbers(self, page_to_remove):
 """ Fix page numbers and numeric page labels if a page was removed. """
 def get_num_type(num_str):
 if page_to_remove.page_label.isdigit():
 return int, None
 elif util.RomanNumeral.is_roman(page_to_remove.page_label):
 return util.RomanNumeral, page_to_remove.page_label.islower()
 elif num_str == '':
 return None, None

 # Fix page labels
 page_idx = self.pages.index(page_to_remove)
 num_type = get_num_type(page_to_remove.page_label)
 if num_type != (None, None):
 for next_page in self.pages[page_idx+1:]:
 if get_num_type(next_page.page_label) != num_type:
 # We can stop re-numbering when the numbering scheme
 # has changed
 break
 num = num_type[0](next_page.page_label)
 next_page.page_label = str(num - 1)

 # Fix sequence numbers:
 # TODO: Verify....
 for idx, next_page in enumerate(self.pages[page_idx+1:], page_idx):
 next_page.sequence_num = idx

 def _fix_table_of_contents(self, page_to_remove):
 """ Fix table of contents if a page was removed. """
 def find_page_in_toc(toc):
 matches = []
 for entry in toc:
 if page_to_remove in (entry.start_page, entry.end_page):
 matches.append(entry)
 if entry.children is not None:
 matches.extend(find_page_in_toc(entry.children))
 return matches

 page_idx = self.pages.index(page_to_remove)
 for entry in find_page_in_toc(self.table_of_contents):
 if entry.start_page == page_to_remove:
 entry.start_page = self.pages[page_idx+1]
 else:
 entry.end_page = self.pages[page_idx-1]
 self._save_toc()

[docs] def remove_pages(self, *pages):
 """ Remove one or more pages from the workflow.

 This will irrevocably remove the page metadata as well as all of its
 associated files, so use responsibly!

 :param pages: One or more pages to remove
 :type pages: :py:class:`Page`
 """
 for page in pages:
 page.raw_image.unlink()
 for fp in page.processed_images.itervalues():
 fp.unlink()
 self._fix_page_numbers(page)
 self._fix_table_of_contents(page)
 self.pages.remove(page)
 self._save_pages()
 self.bag.update_payload(fast=True)

[docs] def crop_page(self, page, left, top, width=None, height=None, async=False):
 """ Crop a page's raw image.

 :param page: Page the raw image of which should be cropped
 :param left: X coordinate of crop boundary
 :param top: Y coordinate of crop boundary
 :param width: Width of crop box
 :param height: Height of crop box
 :param async: Perform the cropping in a background thread
 :return: The Future object when ``async`` was ``True``
 :rtype: :py:class:`concurrent.futures.Future`
 """
 # FIXME: Does this really have to be a Workflow method?
 def do_crop(fname, left, top, width, height):
 if HAS_JPEGTRAN:
 img = JPEGImage(fname)
 else:
 img = Image(filename=fname)
 width = (img.width - left) if width is None else width
 height = (img.height - top) if height is None else height
 if width > (img.width - left):
 width = img.width - left
 if height > (img.height - top):
 width = img.height - top
 if (left, top, width, height) == (0, 0, img.width, img.height):
 self._logger.warn("No-op crop parameters, skipping!")
 return
 self._logger.debug("Cropping \"{0}\" to x:{1} y:{2} w:{3} h:{4}"
 .format(fname, left, top, width, height))
 try:
 cropped = img.crop(left, top, width=width, height=height)
 if HAS_JPEGTRAN:
 cropped.save(fname)
 else:
 img.save(filename=fname)
 img.close()
 except Exception as e:
 self._logger.error("Cropping failed")
 self._logger.exception(e)

 fname = unicode(page.raw_image)
 if async:
 future = self._threadpool.submit(do_crop, fname, left, top, width,
 height)
 self._pending_tasks.append(future)
 return future
 else:
 do_crop(fname, left, top, width, height)

 @property
 def out_files(self):
 out_path = self.path / 'data' / 'out'
 if not out_path.exists():
 return []
 else:
 return sorted(out_path.iterdir())

 @property
 def metadata(self):
 return self._metadata

 @metadata.setter
 def metadata(self, value):
 # Empty old metadata
 for k in self._metadata:
 del self._metadata[k]
 # Save new metadata
 for k, v in value.items():
 self._metadata[k] = v
 on_modified.send(self, changes={'metadata': value})

[docs] def save(self):
 """ Persist all changes to the corresponding files on disk. """
 self._save_config()
 self._save_toc()
 self._save_pages()

 def _update_status(self, **kwargs):
 """ Update :py:attr:`status` and emit a ``on_modified`` signal. """
 trigger_event = True
 if 'step_progress' in kwargs and kwargs['step_progress'] is not None:
 # Don't trigger event if we only made very little progress
 old_progress = self.status['step_progress']
 if old_progress is not None:
 prog_diff = kwargs['step_progress'] - old_progress
 trigger_event = (prog_diff >= 0.01 or # Noticeable progress?
 prog_diff == -1 or # New step?
 (old_progress < 1 and # Completion?
 (old_progress + prog_diff) == 1))
 if not trigger_event:
 kwargs.pop('step_progress', None)
 for key, value in kwargs.items():
 self.status[key] = value
 if trigger_event:
 # We really want to pass the status by value...
 on_modified.send(self, changes={'status': copy.copy(self.status)})

 def _load_config(self, value):
 """ Load configuartion from file in bag and optionally overlay it with
 new values.

 :param value: Values to overlay over over loaded configuration
 :type value: dict or :py:class:`confit.ConfigView`
 :returns: Loaded (and overlaid) configuration
 :rtype: :py:class:`confit.Configuration`
 """
 # Load default configuration
 config = Configuration()
 cfg_file = self.path / 'config.yml'
 if value is None and cfg_file.exists():
 # Load workflow-specific configuration from file
 value = confit.ConfigSource(confit.load_yaml(unicode(cfg_file)),
 unicode(cfg_file))
 if value is not None:
 # Load configuration from supplied ConfigSource or dictionary
 config = config.with_overlay(value)
 return config

 def _save_config(self):
 cfg_path = self.path/'config.yml'
 # Only save configuration from active plugins in addition to plugin
 # selection and device configuration
 self.config.dump(
 unicode(cfg_path), True,
 self.config["plugins"].get() + ["plugins", "device"])
 self.bag.add_tagfiles(unicode(cfg_path))

 def _load_toc(self, data=None):
 """ Load TOC entries from ``toc.json`` in bag or a passed list of
 dictionaries.

 :param data: List of dictionaries to be deserialized
 :type data: list of dict
 :rtype: list of :py:class:`TocEntry`
 """
 def from_dict(dikt):
 start_page, end_page = None, None
 try:
 start_page = next(p for p in self.pages
 if p.sequence_num == dikt['start_page'])
 end_page = next(p for p in self.pages
 if p.sequence_num == dikt['end_page'])
 except StopIteration:
 missing = 'end_page' if start_page else 'start_page'
 raise ValidationError(
 *{missing: "No page with that sequence number."})
 children = [from_dict(x) for x in dikt['children']]
 return TocEntry(dikt['title'], start_page, end_page, children)

 if not data:
 toc_path = self.path / 'toc.json'
 if not toc_path.exists():
 return []
 with toc_path.open('r') as fp:
 data = json.load(fp)
 return [from_dict(e) for e in data]

 def _save_toc(self):
 """ Write TOC entries to ``toc.json`` in bag. """
 if not self.table_of_contents:
 return
 toc_path = self.path / 'toc.json'
 with toc_path.open('wb') as fp:
 json.dump([x.to_dict() for x in self.table_of_contents], fp,
 cls=util.CustomJSONEncoder, indent=2, ensure_ascii=False)
 self.bag.add_tagfiles(unicode(toc_path))
 on_modified.send(self,
 changes={'table_of_contents': self.table_of_contents})

 def _load_pages(self):
 """ Load pages from ``pagemeta.json`` in bag.

 :returns: Deserialized pages
 :rtype: list of :py:class:`Page`
 """
 def from_dict(dikt):
 raw_image = self.path/dikt['raw_image']
 processed_images = {}
 for plugname, fpath in dikt['processed_images'].iteritems():
 relpath = self.path/fpath
 if relpath.exists():
 processed_images[plugname] = relpath
 else:
 self._logger.warning(
 "Could not find processed file {0}, removing from "
 "workflow.".format(relpath))
 return Page(raw_image=raw_image,
 capture_num=dikt['capture_num'],
 processed_images=processed_images,
 page_label=dikt['page_label'],
 sequence_num=dikt['sequence_num'])
 fpath = self.path / 'pagemeta.json'
 if not fpath.exists():
 return []
 with fpath.open('r') as fp:
 return sorted([from_dict(p) for p in json.load(fp)],
 key=lambda p: p.sequence_num)

 def _save_pages(self):
 """ Write pages to ``pagemeta.json`` in bag. """
 fpath = self.path / 'pagemeta.json'
 with fpath.open('wb') as fp:
 json.dump([x.to_dict() for x in self.pages], fp,
 cls=util.CustomJSONEncoder, indent=2, ensure_ascii=False)
 self.bag.add_tagfiles(unicode(fpath))
 on_modified.send(self, changes={'pages': self.pages})

 def _run_hook(self, hook_name, *args):
 """ Run a specific hook method on all activated plugins.

 :param hook_name: Name of hook method to run
 :param *args: Arguments to pass to hook method
 """
 self._logger.debug("Running '{0}' hooks".format(hook_name))
 plugins = [x for x in self._plugins if hasattr(x, hook_name)]

 def update_progress(idx, plug_progress):
 """ Signal callback that updates the status and converts from
 per-plugin progress to per-workflow progress. """
 step_progress = float(idx) / len(plugins)
 internal_progress = plug_progress * (1.0 / len(plugins))
 self._update_status(
 step_progress=(step_progress + internal_progress))

 for (idx, plug) in enumerate(plugins):
 # FIXME: This should really be disconnected once we're done here
 plug.on_progressed.connect(
 lambda s, **kwargs: update_progress(idx, kwargs['progress']),
 sender=plug, weak=False)
 getattr(plug, hook_name)(*args)
 self._update_status(step_progress=float(idx+1)/len(plugins))

 def _get_next_capture_page(self, target_page=None):
 """ Get next page that a capture should be stored as.

 If the workflow is shooting with two devices, this will select a
 page with a sequence number that matches the device's target page
 (odd/even).

 :param target_page: target page of file ('odd/even')
 :type target_page: str/unicode/None if not applicable
 :returns: the target page object
 :rtype: :py:class:`Page`
 """
 base_path = self.path / 'data' / 'raw'
 if not base_path.exists():
 base_path.mkdir()

 try:
 last_num = self.pages[-1].capture_num
 except IndexError:
 last_num = -1

 if target_page is None:
 return base_path / "{03:0}".format(last_num+1)

 is_raw = ('shoot_raw' in self.config['device'].keys() and
 self.config['device']['shoot_raw'].get(bool))
 next_num = (last_num+1 if (self.is_single_camera or
 target_page == 'even')
 else last_num+2)
 path = base_path / "{0:03}.{1}".format(next_num,
 'dng' if is_raw else 'jpg')
 return Page(path, capture_num=next_num)

[docs] def prepare_capture(self):
 """ Prepare capture on devices and initialize trigger plugins. """
 self._logger.info("Preparing capture.")
 self._update_status(step='capture')
 if any(dev.target_page is None for dev in self.devices):
 raise util.DeviceException(
 "Target page for at least one of the devices could not be"
 "determined, please run 'spread configure' to configure your"
 "devices.")
 with concfut.ThreadPoolExecutor(len(self.devices)) as executor:
 futures = []
 self._logger.debug("Preparing capture in devices")
 for dev in self.devices:
 futures.append(executor.submit(dev.prepare_capture))
 util.check_futures_exceptions(futures)

 flip_target = ('flip_target_pages' in self.config['device'].keys() and
 self.config['device']['flip_target_pages'].get())
 if flip_target:
 (self.devices[0].target_page,
 self.devices[1].target_page) = (self.devices[1].target_page,
 self.devices[0].target_page)
 self._run_hook('prepare_capture', self.devices)
 self._run_hook('start_trigger_loop', self.capture)
 self._update_status(prepared=True)

 @_signal_on_error(on_capture_failed)
 def capture(self, retake=False):
 """ Perform a single capture.

 :param retake: Replace the previous capture
 """
 if not self.status['prepared']:
 raise util.SpreadsException("Capture was not prepared before.")
 # To prevent multiple captures from interfering with each other,
 # we hold a lock during the whole process.
 with self._capture_lock:
 self._logger.info("Triggering capture.")
 on_capture_triggered.send(self)
 parallel_capture = (
 'parallel_capture' in self.config['device'].keys() and
 self.config['device']['parallel_capture'].get()
)
 num_devices = len(self.devices)

 # Abort when there is little free space
 if util.get_free_space(self.path) < 50*(1024**2):
 raise IOError("Insufficient disk space to take a capture.")

 futures = []
 captured_pages = []
 with concfut.ThreadPoolExecutor(
 num_devices if parallel_capture else 1) as executor:
 self._logger.debug("Sending capture command to devices")
 for dev in self.devices:
 page = self._get_next_capture_page(dev.target_page)
 captured_pages.append(page)
 futures.append(executor.submit(dev.capture,
 page.raw_image))
 util.check_futures_exceptions(futures)

 if retake:
 # Remove previous n pages, where n == len(self.devices)
 self.remove_pages(*self.pages[-num_devices:])

 for page in sorted(captured_pages, key=lambda p: p.capture_num):
 page.sequence_num = len(self.pages)
 self.pages.append(page)
 self._run_hook('capture', self.devices, self.path)
 # Queue new images for hashing
 future = self._threadpool.submit(self.bag.add_payload,
 *(unicode(p.raw_image)
 for p in captured_pages))
 self._pending_tasks.append(future)

 self._save_pages()
 on_capture_succeeded.send(self, pages=captured_pages, retake=retake)

[docs] def finish_capture(self):
 """ Wrap up capture process. """
 # Waits for last capture to finish
 with self._capture_lock:
 concfut.wait(self._pending_tasks)
 with concfut.ThreadPoolExecutor(len(self.devices)) as executor:
 futures = []
 self._logger.debug("Sending finish_capture command to devices")
 for dev in self.devices:
 futures.append(executor.submit(dev.finish_capture))
 util.check_futures_exceptions(futures)
 # NOTE: For performance reason, we only save the pages here, since
 # the ongoing hashing slows things down considerably during capture
 self._save_pages()
 self._run_hook('finish_capture', self.devices, self.path)
 self._run_hook('stop_trigger_loop')
 self._update_status(step=None, prepared=False)

[docs] def process(self):
 """ Run all captured pages through post-processing. """
 self._update_status(step='process', step_progress=0)
 self._logger.info("Starting postprocessing...")
 processed_path = self.path/'data'/'done'
 if not processed_path.exists():
 processed_path.mkdir()
 self._run_hook('process', self.pages, processed_path)
 self.bag.add_payload(unicode(processed_path))
 self._save_pages()
 self._logger.info("Done with postprocessing!")

[docs] def output(self):
 """ Assemble pages into output files. """
 self._logger.info("Generating output files...")
 self._update_status(step='output', step_progress=0)
 out_path = self.path / 'data' / 'out'
 if not out_path.exists():
 out_path.mkdir()
 self._run_hook('output', self.pages, out_path, self.metadata,
 self.table_of_contents)
 self.bag.add_payload(str(out_path))
 on_modified.send(self, changes={'out_files': self.out_files})
 self._logger.info("Done generating output files!")

[docs] def update_configuration(self, values):
 """ Update the workflow's configuration. """
 # TODO: Validate values against schema in template
 old_cfg = self.config.flatten()
 self.config.set(values)
 diff = util.diff_dicts(old_cfg, self.config.flatten())
 if 'device' in diff:
 self._run_hook('update_configuration', diff['device'])
 on_modified.send(self, changes={'config': self.config.flatten()})

 © Copyright 2013, Johannes Baiter (jbaiter).
 Created using Sphinx 1.3.1.

